

Profile evaluation of the ion irradiation-induced swelling in austenitic stainless steel with varying nickel content
https://doi.org/10.22349/1994-6716-2022-110-2-171-184
Abstract
Comparative studies of porosity and calculation of the swelling profile in samples of austenitic stainless steel with a nickel content of 10 and 20 wt.%. The samples were irradiated at the Tandem-3M accelerator to the same doses of 300 dpa with Ni ions with an ion energy of 11.5 MeV at a temperature of 550°C with preliminary implantation of He. To calculate the swelling profile, digitally processed images were obtained by scanning transmission electron microscopy (STEM). In addition, comparative studies of the phase composition and radiation-induced segregations at grain boundaries, pore/matrix interfacial boundaries, and on the surface of phase precipitates were carried out on irradiated samples with varying nickel contents.
About the Authors
E. A. KuleshovaRussian Federation
Dr Sc. (Eng)
1 Akademika Kurchatova Square, 123182 Moscow; 31 Kashirskoe shosse, 115409 Moscow
D. A. Maltsev
Russian Federation
Cand Sc. (Eng)
1 Akademika Kurchatova Square, 123182 Moscow
A. S. Frolov
Russian Federation
Cand Sc. (Eng)
1 Akademika Kurchatova Square, 123182 Moscow
N. V. Stepanov
Russian Federation
1 Akademika Kurchatova Square, 123182 Moscow
B. Z. Margolin
Russian Federation
Dr Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
А. A. Sorokin
Russian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
V. A. Pechenkin
Russian Federation
Cand Sc. (Eng)
1 Bondarenko Square, 249033 Obninsk, Kaluga region
M. V. Bokhovko
Russian Federation
1 Bondarenko Square, 249033 Obninsk, Kaluga region
U. A. Kobets
Russian Federation
1 Bondarenko Square, 249033 Obninsk, Kaluga region
References
1. Voevodin , V.N., Neklyudov, I.M., Evolution of the structure phase state and radiation resistance of structural materials, Kiev: Naukova Dumka, 2006.
2. Kuleshova, E.A., Frolov, A.S., Prikhodko, K.E., Krikun, E.V., Software for indexing of electron diffraction patterns using X-ray Database, MCM, Budapest, 2015, August.
3. Frolov, A.S., Alekseeva, E.V., Kuleshova, E.A., Razrabotka programmnogo obespecheniya dlya opredeleniya parametrov raspredeleniya por i segregatsiy legiruyushchikh elementov v stalyakh austenitnogo klassa posle ionnogo oblucheniya [Development of software for determining the parameters of the distribution of pores and segregations of alloying elements in austenitic steels after ion irradiation], Crystallographiya, 2021, V. 66, No 6, pp. 993–999.
4. Kurata, H., Isoda, S., Kobayashi, T., Chemical Mapping by Energy-Filtering Transmission Electron Microscopy, J. Electron Microsc. (Tokyo), 1996, V. 45, No 4, pp. 317–320.
5. Lavergne, J.-L., Martin, J.-M., Belin, M., Interactive electron energy-loss elemental mapping by the “Imaging-Spectrum” method, Microsc Microanal Microstruct, 1992, V. 3, pp. 517–528.
6. Williams, D.B., Carter, C.B., Transmission Electron Microscopy: A Textbook for Materials Science, Springer, 2009.
7. Shindo, D., Oikawa, T., Analiticheskaya prosvechivayushchaya elektronnaya mikroskopiya [Analytical transmission electron microscopy], Moscow: Technosphere, 2006
8. Frolov, A.S., Krikun, E.V., Prikhodko, K.E., Kuleshova, E.A., Development of the DIFFRACALC program for analyzing the phase composition of alloys, Crystallogr. Reports, 2017, V. 62, No 5, pp. 809–815.
9. Malis, T., Cheng, S.C., Egerton, R.F., EELS log-ratio technique for specimen-thickness measurement in the TEM, J Electron Microsc Tech, 1988, V. 8, pp. 193–200.
10. Yang, Y.Y., Egerton, R.F., Tests of two alternative methods for measuring specimen thickness in a transmission electron microscope, Micron, 1995, V. 26, No 1, pp. 1–5.
11. Zhang, H.-R., Egerton, R.F., Malac, M., Local thickness measurement through scattering contrast and electron energy-loss spectroscopy, Micron, 2012, V. 43, pp. 8–15.
12. Egerton, R.F., Cheng, S.C., Measurement of local thickness by electron energy-loss spectroscopy, Ultramicroscopy, 1987, V. 21, pp. 231–244.
13. Iakoubovsky, K., Mitsuishi, K., Nakayama, Y., Furu ya, K., Thickness measurements with electron energy loss spectroscopy, Microsc Res Tech, 2008, V. 71, pp. 626–631.
14. Saltykov, S.A., Stereometricheskaya metallografiya [Stereometric metallography], Moscow: Metallurgiya, 1976.
15. Allen, T.R., Cole, J.I., Kenik, E.A., Was, G.S., Analyzing the effect of displacement rate on radiation-induced segregation in 304 and 316 stainless steels by examining irradiated EBR-II components and samples irradiated with protons, J. Nucl. Mat., 2008, V. 376, pp. 169–173.
16. Gurovich, B.A., Kuleshova, E.A., Frolov, A.S., Maltsev, D.A., Prikhodko, K.E., Fedotova, S.V., Margolin, B.Z., Sorokin, A.A., Investigation of high temperature annealing effectiveness for recovery of radiation-induced structural changes and properties of 18Cr–10Ni–Ti austenitic stainless steels, J. Nucl. Mater., 2015, V. 465, pp. 565–581.
Review
For citations:
Kuleshova E.A., Maltsev D.A., Frolov A.S., Stepanov N.V., Margolin B.Z., Sorokin А.A., Pechenkin V.A., Bokhovko M.V., Kobets U.A. Profile evaluation of the ion irradiation-induced swelling in austenitic stainless steel with varying nickel content. Voprosy Materialovedeniya. 2022;(2(110)):171-184. (In Russ.) https://doi.org/10.22349/1994-6716-2022-110-2-171-184