

Fracture properties and mechanisms for irradiated austenitic steels over high temperature range and formulation of fracture criterion. Part 1. Experimental results
https://doi.org/10.22349/1994-6716-2022-110-2-185-202
Abstract
The experimental study results of the fracture properties and mechanisms are represented over temperature range from 200 up to 600°С for austenitic 304 steel (18Cr–9Ni steel) in the following conditions: (1) after neutron irradiation at temperature of 400°С up to damage dose of 30 dpa; (2) after neutron irradiation and subsequent aging at 550°С for 3000 hours. The fracture properties and mechanisms are determined under uniaxial tension of standard smooth cylindrical specimens and notched cylindrical specimens, i.e. for various stress triaxialities. Sharp decrease in the fracture strain and transition to intergranular fracture are revealed over high temperature range forstandard smooth cylindrical specimens. Over the same temperature range the fracture strain is larger for notched cylindrical specimens than for smooth cylindrical specimens, moreover a portion of intergranular fracture is also larger. This finding is rather abnormal as the fracture strain usually decreases when stress triaxiality and intergranular fracture portion increase. The obtained results are used for formulation of fracture criterion and elaboration of fracture model for high temperature radiation embrittlement that is considered in the second part of the paper.
Keywords
About the Authors
B. Z. MargolinRussian Federation
Dr Sc (Eng)
49 Shpalernaya St, 191015 St Petersburg
A. A. Sorokin
Russian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
A. A. Buchatsky
Russian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
V. A. Shvetsova
Russian Federation
Cand Sc. (Phys-Math)
49 Shpalernaya St, 191015 St Petersburg
O. Yu. Prokoshev
Russian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
N. E. Pirogova
Russian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
References
1. Barnes, R.S., Embrittlement of stainless steels nickel based alloys at high temperature induced by neutron radiation, Nature, 1965, V. 206, p. 1307.
2. Ward, A.L., Holmes, J.J., Ductility Loss in Fast Reactor irradiated stainless steel, Nuclear applications and technology, 1970, V. 9.
3. Claudson, T.T., Barker, R.W., The effects of fast flux irradiation on the mechanical properties and dimensional stability of stainless steel, Nuclear application and technology, 1970, No 9, pp. 10–23.
4. Fish, R.L., Straalsund, J.L., et al., Swelling and Tensile Property Evaluations of High-Fluence EBR-II Thimbles, ASTM STP 529, 1973, pp.149–164.
5. Fish, R.L., Hunter, C.W. Tensile Properties of Fast Reactor Irradiated Type 304 Stainless Steel, Irradiation Effects on the Microstructure and Properties of Metals, ASTM STP 611, American Society for Testing and Materials, 1976, pp. 119–138.
6. Zelensky, V.F., Kirykhin, N.M., Neklydov, I.M., et al., Vysokotemperaturnoe radiatsionnoe okhrupchivanie materialov [High temperature radiation embrittlement of materials. Analytical review], Kharkov, 1983.
7. Huang, F.H., The fracture characterization of highly irradiated Type 316 stainless steel, Int. J. Fracture, 1984, No 25, pp. 181–193.
8. Votinov, S.N., Prokhorov, V.I., Ostrovsky, Z.E., Obluchennye austenitnye stali [Irradiated stainless steels], Moscow: Nauka, 1987.
9. Tavassoli, A.A., Picker, C., Wareign, J., Data collection on the effect of irradiation on the mechanical properties of austenitic stainless steels and weld metals, ASTM STP, 1996, 1270, pp. 995–1010.
10. Shvetsova, V.A., Prokoshev, O. Yu., Margolin, B.Z., Sorokin, A.A., Potapova, V.A., Sinergetichesky mekhanizm radiatsionnogo okhrupchivaniya austenitnykh nerzhaveyushchikh staley pri vysokotemperaturnom dlitelnom obluchenii [Synergetic mechanism of radiation embrittlement of austenitic stainless steels under hightemperature long-term irradiation], Voprosy Materialovedeniya, 2017, No 3 (91), pp. 182–197.
11. Hunter, C. W., Fish, R.L., Holmes, J.J., Channel Fracture in Irradiated EBR-II Type 304 Stainless Steel, American Nuclear Society Transactions, 1972, V. 15, pp. 254–255.
12. Huang, F.H., Comparison of fracture behavior for low-swelling ferritic and austenitic alloys irradiated in the fast flux test facility (FFTF) to 180 dpa, Engineering Fracture Mechanics, 1992, V. 43, pp. 733–748.
13. Margolin, B.Z., Sorokin, A.A., Shvetsova, V.A., Minkin, A.I., Potapova, V.A., Smirnov, V.I., The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part 1: Ductility and fracture toughness, Journal of Nuclear Materials, 2016, V. 480, pp. 52–68.
14. Voevodin, V.N., Nekludov, I.M., Evoliutsiya strukturno-fazovogo sostoyaniya i radiatsionnaya stoykost konstruktsionnykh materialov [Evolution of structural-and-phase state and radiation resistance of structural materials], Kiev: Naukova dumka, 2006.
15. Karzov, G.P., Margolin, B.Z., Shvetsova, V.A., Fiziko-mekhanicheskoe modelirovanie protsessov razrusheniya [Physical and mechanical modelling for fracture process], St Petersburg: Polytekhnika, 1993.
16. Margolin, B.Z., Sorokin, A.A., Prognozirovanie vliyaniya neytronnogo oblucheniya na kharakteristiki vyazkogo razrusheniya austenitnykh staley [Prediction of neutron irradiation effect on ductile fracture characteristics of austenitic steels], Voprosy Materialovedeniya, 2012, No 1 (69), pp. 126–147.
Review
For citations:
Margolin B.Z., Sorokin A.A., Buchatsky A.A., Shvetsova V.A., Prokoshev O.Yu., Pirogova N.E. Fracture properties and mechanisms for irradiated austenitic steels over high temperature range and formulation of fracture criterion. Part 1. Experimental results. Voprosy Materialovedeniya. 2022;(2(110)):185-202. (In Russ.) https://doi.org/10.22349/1994-6716-2022-110-2-185-202