

Obtaining carbon materials for the adsorption of greenhouse gases
https://doi.org/10.22349/1994-6716-2022-112-4-43-49
Abstract
Coffee-based carbon adsorbents are promising adsorbents for greenhouse gases, in particular methane, due to the possibility of creating a precision porous structure. Microporous and micromesoporous samples with a narrow pore size distribution up to 7 nm have been obtained. A study was made of methane adsorption in carbon adsorbents obtained by chemical activation at different ratios of KOH to coffee precursor. The highest adsorption of the greenhouse gas methane, equal to ~18 mmol/g at 100 bar and a temperature of 298 K, is achieved on a sample with a ratio of activating agent to carbonized precursor of 6:1 (6AKP)
About the Authors
A. E. MemetovaRussian Federation
Cand Sc.
Tambov, Sovetskaya St., 106/5, room 2
N. R. Memetov
Russian Federation
Cand Sc.
Tambov, Sovetskaya St., 106/5, room 2
A. D. Zelenin
Russian Federation
Tambov, Sovetskaya St., 106/5, room 2
A. V. Babkin
Russian Federation
Cand Sc.
119991 Moscow, Leninskiye Gory-1
N. A. Chapaksov
Russian Federation
Tambov, Sovetskaya St., 106/5, room 2
E. S. Mkrtchyan
Russian Federation
Tambov, Sovetskaya St., 106/5, room 2
References
1. Torres-Valenzuela L.S., Serna -Jiménez J.A., Martínez K., Coffee by-products: nowadays and perspectives, Coffee-Prod., 2019, pp. 1–18, DOI:10.5772/intechopen.89508.
2. Alshareef, S.A., Alqadami, A.A., Khan, M.A., Alanazi, H.S., Siddiqui, M.R., Jeon, B.-H., Simultaneous co-hydrothermal carbonization and chemical activation of food wastes to develop hydrochar for aquatic environmental remediation, Bioresource Technology, 2022, V. 347, p. 126363. DOI:10.1016/j.biortech.2021.126363.
3. Tsivadze, A.Yu., Aksyutin, O.E., Ishkov, A.G., et al., Adsorbtsionnye sistemy akkumulirovaniya metana na osnove uglerodnykh poristykh struktur [Adsorption systems for methane storage based on carbon porous structures], Uspekhi khimii, 2018, V. 87, No 10, pp. 950–983.
4. Hu, B., Liu, J.-T., Chen, C.-J., Zhao, Z., Chang, S.J., Kang, P.-L., Ultra-low charge transfer resistance carbons by one-pot hydrothermal method for glucose sensing, Science China Materials, 2017, V. 60. pp. 1234–1244, DOI:10.1007/s40843-017-9104-9.
5. Zhang, Y., Kang, X., Tan, J., Frost, R.L., Influence of calcination and acidification on structural characterization of Anyang anthracites, Energy Fuels, 2013, V. 27, No 11, pp. 7191–7197. DOI:10.1021/ef401658p
6. Juan, Y., Keqiang, Q., Preparation of activated carbon by chemical activation under vacuum, Environmental Science & Technology, 2009, V. 43, No 9, pp. 3385–3390, DOI:10.1021/es8036115
7. Demir-Cakan , R., Baccile, N., Antonietti, M., Titirici , M .-M., Carboxylate-rich carbonaceous materials via one-step hydrothermal carbonization of glucose in the presence of acrylic acid, Chemistry of Materials, 2009, V. 21, pp. 484–490, DOI:10.1021/cm802141h.
8. Coates, J., Meyers, R.A., Interpretation of Infrared Spectra, A Practical Approach. Encyclopedia of Analytical Chemistry, Copyrights John Wiley & Sons Ltd, 2019, pp. 1–23. DOI:10.1002/9780470027318.A5606.
Review
For citations:
Memetova A.E., Memetov N.R., Zelenin A.D., Babkin A.V., Chapaksov N.A., Mkrtchyan E.S. Obtaining carbon materials for the adsorption of greenhouse gases. Voprosy Materialovedeniya. 2022;(4(112)):43-49. (In Russ.) https://doi.org/10.22349/1994-6716-2022-112-4-43-49