

Strength analysis of carbon fiber reinforced PEEK composites with heat resistant sizing agents
https://doi.org/10.22349/1994-6716-2022-112-4-62-76
Abstract
Continuous Fiber Reinforced Thermoplastic Composites (CFRTPCs) are known for their demand in high-tech industries due to their excellent mechanical, thermal and chemical performance. However, poor adhesion interaction between carbon fiber (CF) and high-performance polymers such as PEEK tend to influence the mechanical modulus of the composite parts in a negative way. In the current work, a number of PAA-based sizing agents modified with various fillers were used for CF surface treatment in order to improve adhesion. Thus, the wettability of the sizing agents was studied, as well as the free surface energy using the Owens-Wendt method. The calculated energy values were used to determine the work of adhesion between the sizing agents and PEEK. The adhesive connection between the CF treated with the sizing agents and PEEK was examined by the single fiber pull-out testing. Furthermore, the most promising samples were used for CF, on the basis of which towpreg composites samples were obtained to study its physico-mechanical properties. Results suggested that the values of the strength characteristics of the composites are comparable to the values measured for composites based on commercially available materials.
Keywords
About the Authors
D. S. AleksandrovaRussian Federation
123182 Moscow, Akademika Kurchatova Sq, 1
107076 Moscow, Bogorodsky Val, 3
M. V. Komarova
Russian Federation
123182 Moscow, Akademika Kurchatova Sq, 1
107076 Moscow, Bogorodsky Val, 3
A. S. Egorov
Russian Federation
Cand Sc. (Chem)
123182 Moscow, Akademika Kurchatova Sq, 1
107076 Moscow, Bogorodsky Val, 3
A. L. Andreichev
Russian Federation
109316 Moscow, Volgogradsky Ave, 42/Bldg 13
A. A. Shumakov
Russian Federation
109316 Moscow, Volgogradsky Ave, 42/Bldg 13
References
1. Beaumont, P.W.R., Soutis, C., Hodzic , A., The structural integrity of carbon fiber composites: fifty years of progress and achievement of the science, development and applications, Springer, 2016.
2. Tang, S., Hu , C., Design, Preparation and Properties of Carbon Fiber Reinforced Ultra-High Temperature Ceramic Composites for Aerospace Applications: A Review, Journal of Materials Science & Technolog., 2017, V. 33, No 2, p. 117, DOI:10.1016/j.jmst.2016.08.004.
3. Das, T.K., Ghosh, P., Das, N.Ch ., Preparation, development, outcomes and application versatility of carbon fiber-based polymer composites: a review, Adv Compos Hybrid Mater., 2019, V. 2, No 2, p. 214. DOI:10.1007/s42114-018-0072-z
4. Goh , G.D., Dikshit, V., Nagalingam, A.P., Goh , G.L., Agarwala , S., Sing, S.L., Wei, J., Yeong, W.Y., Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics, Materials & Design, 2018, V. 137, p. 79. DOI:10.1016/j.matdes.2017.10.021
5. Parandoush , P., Zhou , C., Lin , D., 3D-Printing of Ultrahigh Strength Continuous Carbon Fiber Composites, Advanced Engineering Materials, 2019, V. 21, No 2, p. 1800622. DOI:10.1002/adem.201800622.
6. Wu , G.M., Schultz, J.M., Processing and properties of solution impregnated carbon fiber reinforced polyethersulfone composites, Polym. Compos., 2000, V. 21, No 2, p. 223. DOI:10.1002/pc.10179
7. Soutis, C., Fibre reinforced composites in aircraft construction, Prog. Aerosp. Sci., 2005, V. 41, No 2, p. 143. DOI:10.1016/j.paerosci.2005.02.004.
8. Holmes, M., Aerospace looks to composites for solutions, Reinf. Plast., 2017, V.61, No 4, p. 237. DOI:10.1016/j.repl.2017.06.079
9. Sudhin , AU, Remanan , M., Ajeesh , G., Jayanarayanan , K., Comparison of Properties of Carbon Fiber Reinforced Thermoplastic and Thermosetting Composites for Aerospace Applications // Materials Today: Proceedings, 2020, V. 24, No 2, pp. 453–462. DOI:10.1016/j.matpr.2020.04.297
10. Veazey, D., Hsu , T., Gomez, E.D., Next generation high-performance carbon fiber thermoplastic composites based on polyaryletherketones, J. Appl. Polym. Sci., 2017, V. 134, No 6, p. 44441. DOI:10.1002/app.44441.
11. Phillips, R., Glauser, T., Månson , J.-A.E., Thermal stability of PEEK/carbon fiber in air and its influence on consolidation, Polym. Compos., 1997, V. 18, No 4, p. 500. DOI:10.1002/pc.10302.
12. Barile, C., Casavola , C., De Cillis, F., Mechanical comparison of new composite materials for aerospace applications, Composites Part B, 2019, V. 162, p. 122. DOI:10.1016/j.compositesb.2018.10.101.
13. Dilsiz, N., Wightman , J.P., Surface analysis of unsized and sized carbon fibers, Carbon, 1999, V. 37, No 7, p. 1105. DOI:10.1016/S0008-6223(98)00300-5.
14. Chen , J., Wang, K., Zhao, Y ., Enhanced interfacial interactions of carbon fiber reinforced PEEK composites by regulating PEI and graphene oxide complex sizing at the interface, Compos. Sci. Technol., 2018, V. 154, p. 175. DOI:10.1016/j.compscitech.2017.11.005.
15. Giraud , I., Franceschi, S., Perez, E., Lacabanne, C., Dantras, E., Influence of new thermoplastic sizing agents on the mechanical behavior of poly(ether ketone ketone)/carbon fiber composites, J. Appl. Polym. Sci., 2015, V.132, No 38, p. 42550. DOI:10.1002/app.42550.
16. Chuang, S.L., Chu Ning-Jo, Whang, W.T., Effect of polyamic acids on interfacial shear strength in carbon fiber/aromatic thermoplastics, J. Appl. Polym. Sci., 1990, V. 41, No 1–2, p. 373. DOI:10.1002/app.1990.070410129.
17. Yuan , C., Li, D., Yuan , X., Liu , L., Huang, Y., Preparation of semi-aliphatic polyimide for organic-solvent-free sizing agent in CF/PEEK composites, Compos. Sci. Technol., 2021, V. 201, p. 108490. DOI:10.1016/j.compscitech.2020.108490.
18. Yuan , H., Zhang, S., Lu , C., He, S., An , F., Improved interfacial adhesion in carbon fiber/polyether sulfone composites through an organic solvent-free polyamic acid sizing, Appl. Surf. Sci., 2013, V. 279, p. 279. DOI:10.1016/j.apsusc.2013.04.085.
19. Toray Cetex® TC1200 PEEK Product data sheet TC1200_PDS_v3_2019-11-13, p. 4
20. Patent RU2687447C1: Egorov, A.S., Ivanov, V.S., Bogdanovskaya, M.V., Sposob polucheniya legirovannykh yodom uglerodnykh nanotrubok [Method for producing carbon nanotubes doped with iodine], 2019.
21. Okassa , L.N., Marchais, H., Douziech -Eyrolles, L., Cohen -Jonathan , S., Souce, M., Dubois, P., Chourpa , I., Development and characterization of sub-micron poly(d,l-lactide-co-glycolide) particles loaded with magnetite/maghemite nanoparticles, Int. J. Pharm., 2005, V. 302, No 1–2, p. 187. DOI:10.1016/j.ijpharm.2005.06.024
22. Fowkes, F.M. Attractive forces at interfaces, Ind. Engr. Chem., 1964, V. 56, No 12, p. 40. DOI:10.1021/ie50660a008
23. Owens, D.K., Wendt, R.C. Estimation of the surface free energy of polymers, J. Appl. Polym. Sci., 1969, V. 13, No 8, p. 1741. DOI:10.1002/app.1969.070130815
24. Kozbial, A., Li, Z., Conaway, C., McGinley, R., Dhingra , S., Vahdat, V., Zhou , F., D’Urso, B., Liu , H., Li, L., Study on the Surface Energy of Graphene by Contact Angle Measurements, Langmuir, 2014, V. 30, No 28, p. 8598. DOI:10.1021/la5018328.
Review
For citations:
Aleksandrova D.S., Komarova M.V., Egorov A.S., Andreichev A.L., Shumakov A.A. Strength analysis of carbon fiber reinforced PEEK composites with heat resistant sizing agents. Voprosy Materialovedeniya. 2022;(4(112)):62-76. (In Russ.) https://doi.org/10.22349/1994-6716-2022-112-4-62-76