

Structure formation of nitrogen-containing austenitic 04Kh20N6G11M2AFB steel. Part 1: Influence of deformation temperature and strain rate on the dynamic recrystallization
https://doi.org/10.22349/1994-6716-2018-94-2-00-00
Abstract
The paper determines values of the deformation threshold necessary for the initiation and development of dynamic recrystallization in the investigated deformation temperature and strain rate. Analysis of diagrams shows that the deformation resistance increases with decreasing of temperature, while a weak peak is observed at temperature 1000–1200°C, when dynamic recrystallization starts. The structure of high-strength corrosion-resistant nitrogen-containing austenitic steel 04Kh20N6G11M2AFB after hot deformation with strain rate 0.1, 1.0 and 10 s-1 in the temperature range 900–1200°С has been studied by EBSD analysis and transmission electron microscopy.
Keywords
About the Authors
O. V. FominaRussian Federation
Cand. Sci (Eng)
49, Shpalernaya St., 191015, St. Petersburg
T. V. Vikhareva
Russian Federation
49, Shpalernaya St., 191015, St. Petersburg
V. V. Sagaradze
Russian Federation
Dr. Sci (Eng)
18, Sofia Kovalevskaya St, 620990, Ekaterinburg
N. V. Kataeva
Russian Federation
Cand. Sci (Eng)
18, Sofia Kovalevskaya St, 620990, Ekaterinburg
References
1. Malyshevsky, V. A., Tsukanov, V. V., Kalinin, G. Yu ., Grachev, G. V., Sovremennye malomagnitnye stali dlya sudostroeniya [Modern low-magnetic steels for shipbuilding], Sudostroenie, 2009, No 3, pp. 66–68.
2. Kalinin, G.Y u ., Kharkov, A. A., Fomina, O. V., Golub, Yu. V., K voprosu o perspektivakh shirokogo vnedreniya austenitnykh staley, legirovannykh azotom zhurnal [On the issue of the prospects for the widespread introduction of austenitic steels doped with nitrogen], Morskoy vestnik, 2010, No 4 (36), pp. 82–83.
3. Potak, Y a .M., Vysokoprochnye stali [High-strength steels], Moscow: Metallurgiya, 1972.
4. Sagaradze, V. V., Uvarov, A. I., Uprochnenie i svoistva austenitnykh staley [Hardening and properties of austenitic steels], Ekaterinburg, 2013.
5. Kostina, M. V., Bannykh, O. A., Blinov, V. M., Dymov, A. A., Legirovannye azotom khromistye korrozionno-stoikie stali novogo pokoleniya [Alloyed chromium corrosion resistant steels of a new generation], Materialovedenie, 2001, No 4 (7), pp. 35–44.
6. Gavriliuk, V. B., Nitrogen in Iron and Steel, ISIJ International, 1996, V. 36, N 7, pp. 738–745.
7. Gorynin, I. V., Rybin, V. V., Malyshevsky, V. A., Kalinin, G. Yu ., Mushnikova, S. Yu., et al . Sozdanie perspektivnykh printsipialno novykh korrozionno-stoykikh korpusnykh staley, legirovannykh azotom [Creation of promising fundamentally new corrosion-resistant cored steels doped with nitrogen], Voprosy Materialovedeniya, 2005, No 2 (42), pp. 40–54.
8. Kostina, M. V., Bannykh, O. A., Blinov, V. M., Osobennosti staley, legirovannykh azotom [Features of steels doped with nitrogen], MITOM, 2000, No 12, pp. 3–6.
9. Bannykh, O. A., Blinov, V. M., Kostina, M. V., Blinov E. V., O vozmozhnosti ekonomii nikelya v stali tipa 0Kh17N12M2 (AISI 316) za schet legirovaniya azotom // On the possibility of saving nickel in steel type 0X17N12M2 (AISI 316) due to nitrogen doping, Metally, 2006, No 5, pp. 7–14.
10. Gavriliuk, V. G., Burns, G., Vysokoprochnaya austenitnaya nerzhaveyushchaya stal [HighStrength Austenitic Stainless Steel], MITOM, 2007, No 12, pp. 17–19.
11. Mushnikova, S. Yu., Kostin, S. K., Sagaradze, V. V., Kataeva, N. V., Struktura, svoistva i soprotivlenie korrosionnomu rastreskivaniyu azotsoderzhashchei austenitnoi stali, uprochnennoi termomehanicheskoi obrabotkoi [Structure, properties, and resistance to stress-corrosion cracking of a nitrogen-containing austenitic steel strengthened by thermomechanical treatment], Fisika metallov i metallovedenie, 2017, V. 118, No 11, pp. 1223–1235.
12. Kodzhaspirov, G. E., Sulyagin, R. V., Karjalainen, L. P., Vliyanie temperaturnodeformatsionnykh usloviy na uprochnenie i razuprochnenie azotsoderzhashchikh korrozionno-stoikikh staley [Influence of temperature-deformation conditions on hardening and softening of nitrogen-containing corrosionresistant steels, MITOM, 2005, No 11 (605), pp. 22–26.
13. Kostina, M. V., Bannykh, O. A., Blinov, V. M., Dymov, A. A., Legirovannye azotom khromistye korrozionno-stoykie stali novogo pokoleniya, [Alloyed chromium corrosion resistant steels of a new generation], Materialovedenie, 2001, No. 4 (7), pp. 35–44.
14. Bannykh, O. A., Blinov, V. M., Kostina, M. V., Issledovanie evoliutsii struktury azotistoy korrozionno-stoykoy austentnoy stali 06Х21АГ10Н7МФБ pri termodeformatsionnom i termicheskom vozdeystvii [Investigation of the evolution of the structure of a nitrogenous corrosion-resistant austenic steel 06Kh21AG10N7MFB under thermal deformation and thermal action], Voprosy Materialovedeniya, 2006, No 1 (45), pp. 9–22.
15. Blinov, V. M., Poymenov, I. L., e t al . , Vliyanie goriachey deformatsii na strukturu i mekhanicheskie svoystva vysokoazotistykh ne-magnitnykh staley[Effect of hot deformation on the structure and mechanical properties of high-nitrogen non-magnetic steels], Struktura i fiziko-mekhanicheskie svoystva nemagnitnykh staley [Structure and physicomechanical properties of nonmagnetic steels], Moscow: Nauka, 1986, pp. 30–33.
16. Gorynin, I. V., Rybin, V. V., Malyshevsky, V. A., Kalinin, G. Yu., Malakhov, N. V., Mushnikova, S. Yu., Yampolsky, V. D., Sozdanie perspektivnykh printsipialno novykh korrozionno-stoykikh korpusnykh staley, legirovannykh azotom [Creation of promising fundamentally new corrosion-resistant corpuscular steels doped with nitrogen], Voprosy Materialovedeniya, 2005, No 2 (42), pp. 40–54.
17. Sagaradze, V. V., Uvarov, A. I., Pecherkina, N. L., Kalinin, G. Yu., Mushnikova, S. Yu., Vliyanie uprochnyayushchey obrabotki na strukturu i mekhanicheskie svoistva zakalennoy azotsoderzhashchey auste-nitnoy stali 04Х20Н6Г11АМ2БФ [Effect of hardening treatment on the structure and mechanical properties of hardened nitrogen-containing austenitic steel 04Kh20N6G11AM2BF], MITOM, 2008, No 10 (610), pp. 33–38.
18. Gorynin, I. V., Malyshevsky, V. A., Kalinin, G. Yu., Mushnikova, S. Yu., Bannykh, O. A., Blinov, V. M., Kostina, M. V., Korrozionno-stoikie vysokoprochnye azotistye stali [Corrosion-resistant high-strength nitrogenous steels], Voprosy Materialovedeniya, 2009, No 3 (59), pp. 7–16.
19. Mushnikova, S. Yu., Sagaradze, V. V., Filippov, Yu. I., Kataeva, N. V., Zavalishin, V. A., Malyshevsky, V. A., Kalinin, G. Yu., Kostin, S. K. , Sravnitelny analiz korrozionnogo rastreskivaniya austenitnykh staley s raznym soderzhaniyem azota v khloridnykh i vodorodsoderzhashchikh sredakh [Comparative analysis of stress-corrosion cracking of austenitic steels with different nitrogen content in chloride and hydrogen-containing media], FMM, 2015, V. 116, pp. 663–671.
20. Kozhaspirov, G. E., Rudskoy, A. I., Rybin, V. V., Fizicheskie osnovy i resursosberegayushchie tekhnologii izgotovleniya izdeliy plasticheskim deformirovaniem [Physical principles and resourcesaving technologies for the manufacture of products by plastic deformation], St Petersburg: Nauka, 2006.
21. Bernshtein, M. L., Struktura deformirovannykh metallov [Structure of deformed metals], Moscow: Metallurgiya, 1977.
22. Gorelik, S. S., Dobatkin, S. V., Kaputkina, L. M. Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys], Moscow: MISIS, 2005.
23. Rekristallizatsiya metallicheskikh materialov [Recrystallization of metallic materials], Hesner, F., (Ed.), Moscow: Metallurguiya, 1982.
24. Humphreys, F. J., Hatherly, M., Recrystallization and related annealing phenomena, Elsevier, 2004.
25. Doherty, R. D., Hughes, D. A., Humphreys, F. J., Jonas, J. J., et a l ., Current Issues in Recrystallization: a review, Materials Science and Engineering A, 1997, V. 238, pp. 219–274.
26. Kondratiev, N. S., Trusov P. V., Mekhanizmy obrazovaniya zarodyshey rekristallizatsii v metallakh pri termomekhanicheskoy obrabotke [Mechanisms of formation of embryos of recrystallization in metals under thermomechanical treatment], Vestnik PNIPU. Mechanics, 2016, No. 4, pp. 151–174.
27. Evangelista E., McQueen H. J., Ryan N. D. Hot strength, dynamic recovery and dynamic recrystallization of 317 type stainless steel // Metallurgical science and technology. – 1987. – V. 5. – No 2. – P. 50–58.
28. Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H., Jonas, J. J., Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions, Progress in Materials Science, 2014, V. 60, pp. 130–207.
29. Bernshtein, M. L., Zaimovskii, V. A., Kaputkina, L. M., Termomekhanicheskaya obrabotka stali [Thermomechanical treatment of steel], Moscow: Metallurgiya, 1983.
30. Ponge D., Gottstein G., Necklace formation during dynamic recrystallization: mechanisms and impact on flow behavior, Acta mater., V. 46, No. 1, pp. 69–80.
31. Dehghan-Manshadi A., Barnett M. R., Hodgson P. D., Recrystallization in AISI 304 austenitic stainless steel during and after hot deformation, Materials Science and Engineering A, 2008, V. 485, pp. 664–672.
32. Dehghan-Manshadi A., Barnett M. R., Hodgson P. D. Hot deformation and recrystallization of austenitic stainless steel: part I. Dynamic recrystallization, Metallurgical and Material Transactions A, 2008, V. 39 A, pp. 1359–1370.
33. Poirier J. P. Vysokotemperaturnaya plastichnost kristallicheskikh tel [High-temperature plasticity of crystalline bodies], Moscow: Metallurgiya, 1982, p. 272.
34. Hoseini Asli A., Zarei-Hanzaki, A., Dynamic Recrystallization Behavior of a Fe-Cr-Ni Super-Austenitic Stainless Steel, J. Mater. Sci. Technol., V. 25, No 5, 2009, pp. 603–606.
35. Rybin, V. V., Bolshie plasticheskie deformatsii i razrushenie metallov [Large plastic deformation and destruction of metals], Moscow: Metallurgiya, 1986.
Review
For citations:
Fomina O.V., Vikhareva T.V., Sagaradze V.V., Kataeva N.V. Structure formation of nitrogen-containing austenitic 04Kh20N6G11M2AFB steel. Part 1: Influence of deformation temperature and strain rate on the dynamic recrystallization. Voprosy Materialovedeniya. 2018;(2(94)):7-21. (In Russ.) https://doi.org/10.22349/1994-6716-2018-94-2-00-00