Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Correlation of fracture toughness with microstructural parameters and standard mechanical properties of high-strength medium-alloy steel

https://doi.org/10.22349/1994-6716-2023-113-1-103-123

Abstract

Fracture toughness of rolled plates of high-strength medium-alloy steel with a martensitic or martensitic- bainite microstructure can vary widely depending on the parameters of their microstructure, which depends on the specific chemical composition, rolling parameters, quenching and tempering. In previous works, the authors studied the metal of various experimental smelts. The studied materials were significantly different in the size of structural components separated by large-angle boundaries (hereditary austenitic grain, martensite packages, and bainite crystallites). The continuation of these studies is the analysis of the relationship between the fracture toughness of a metal of one smelt and the general quenching parameters and, as a consequence, with the same parameters of the microstructure formed during quenching, but with different tempering parameters. A general structural state parameter based on the obtained data, and correlated with fracture toughness is proposed.

About the Authors

A. V. Ilyin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc (Eng)

49 Shpalernaya St, 191015 St Petersburg



A. A. Lavrentiev
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



G. D. Motovilina
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



E. V. Zabavicheva
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



S. N. Petrov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc (Eng)

49 Shpalernaya St, 191015 St Petersburg



References

1. Golosienko, S.A., Ilyin , A.V., Lavren ti ev, A.A., Mikhailov, M.S., Motovilina , G.D., Petrov, S.N., Sadkin , K.E., Soprotivlenie khrupkomu razrusheniyu vysokoprochnoy srednelegirovannoy stali i ego sviaz s parametrami strukturnogo sostoyaniya [Resistance to brittle fracture of high-strength medium-alloy steel and its relationship with the parameters of the structural state], Voprosy Materialovedenya, 2019, No 3(99), pp. 128–147.

2. Ilyin, A.V., Lavrenti ev, A.A., Mizet sk y, A.V., O formulirovke localnogo kriteriya khrupkogo razrusheniya dlya prognozirovaniya tresсhinostoikosti vysokoprochnoi stali [On the formulation of the local brittle fracture criterion for predicting the crack resistance of high-strength steel], Voprosy Materialovedenya, 2020, No 3(103), pp. 114–134.

3. Morris, J.W., Jr., On the Ductile-Brittle Transition in Lath Martensitic Steel, ISIJ International, 2011, V. 51(10), pp. 1569–1575.

4. Rybin , V.V., Malyshevsky, V.A., Kh lusova , E.I. Vysokoprochnye svarivaemye uluchshaemye stali [High-strength weldable improvable steels], St Petersburg: Polytechnic University, Publ., 2016.

5. Gorynin , I.V., Rybin , V.V., Malyshevsky, V.A., Semicheva , T.G., Sherochina , L.G., Prevraschenie dislokatsionnogo martensita pri otpuske vtorichnotverdeyuschey stali [Transformation of dislocation martensite during heat treatment of secondary hardening steel], Metallovedenie i termicheskaya obrabotka metallov, 1999, No 3, pp. 13–19.

6. Aksakov, I.S., Anisimov, A.V., Antipov, V.S., et al., Materialy dlya sudostroeniya i morskoy tekhniki [Materials for shipbuilding and marine equipment], Gorynin I.V. (Ed.), St Petersburg: NPO Professional, 2009, V. 2.

7. Metod difraktsii otrazhennykh elektronov v materialovedenii [The method of diffraction of reflected electrons in materials science], Schwartz, A., Kumar, M., Adams, B., Filda, D. (Eds.), Moscow: Tekhnosphera, 2014, pp. 376–393.

8. Petrov, S.N., Ptashnick , A.V., Ekspress-metod opredeleniya granits byvshego austenitnogo zerna v stalyakh beinitno-martensitnogo klassa po localnym orientirovkam prevraschennoy struktury [Express method for determining the boundaries of the former austenitic grain in steels of the bainite-martensitic class by local orientations of the transformed microstructure], Metallovedenie i termicheskaya obrabotka metallov, 2019, No 5, pp. 5–12.

9. Rybin , V.V., Rubtsov, A.S., Nesterova , E.V., Metod odinochnykh refleksov (OR) i ego primenenie dlya elektronnomikroskopicheskogo analiza dispersnykh faz [The method of single reflexes (SR) and its application for electron microscopic analysis of dispersed phases], Zavodskaya laboratoriya, 1982, No 5, pp. 21–26.

10. Metodika analiza fazovogo sostava konstruktsionnykh nanomaterialov metodom rentgenovskoi difraktometrii, svidetelstvo ob attestatsii No 01.00225/206-03-2011 ot 20.05.2011 g., registratsionny kod FR.1.31.2011.10209 [Method of analysis of the phase composition of structural nanomaterials by X-ray diffractometry, certificate of attestation No.01.00225/206-03-2011, dated 05/20/2011, registration code FR.1.31.2011.10209].

11. Pallaspuro, A.S., Kaijalainen, A., Mehtonen, S., et al., Effect of microstructure on the impact toughness transition temperature of direct quenched steels, Materials Science & Engineering A, 2018, V. 712, pp. 671–680.

12. Kopelman L.A., Soprotivlyaemost svarnykh uslov khrupkomu rasrusheniyu [Brittle fracture resistance of welded assembles], Leningrad, Mashinostroenie, 1978.


Review

For citations:


Ilyin A.V., Lavrentiev A.A., Motovilina G.D., Zabavicheva E.V., Petrov S.N. Correlation of fracture toughness with microstructural parameters and standard mechanical properties of high-strength medium-alloy steel. Voprosy Materialovedeniya. 2023;(1(113)):103-123. (In Russ.) https://doi.org/10.22349/1994-6716-2023-113-1-103-123

Views: 154


ISSN 1994-6716 (Print)