

Comparative analysis of compressed hydrogen losses during its transportation through the pipelines from different materials
https://doi.org/10.22349/1994-6716-2023-113-1-124-133
Abstract
The authors estimate possible losses of transported compressed hydrogen (P = 10 MPa) due to diffusion through the pipe wall applying Sieverts law and Arrhenius equation and using tabular data on the coefficients of permeability and solubility. The calculation was carried out for pipelines made of various metallic and non-metallic materials at room and elevated temperatures. It is shown that the volume of the diffused gas at T = 298°K (25°С) is only fractions of a percent of the pumped hydrogen volume. At the same time, the biggest loss occurs in a pipeline made of polyethylene (~0.03%), and the most insignificant one in austenitic steels (~10-6%). For carbon and low-alloy steels, the main materials of gas pipelines, these losses are at the level of 10-4–10-5 %. When the temperature rises to 683°K (410°C), the losses in steel pipelines increase to 0.25%, in polymer pipelines to 20%.
About the Authors
V. I. BolobovRussian Federation
Dr Sc (Eng)
2, 21st Line V.O., 199106, St Petersburg
A. P. Petkova
Russian Federation
Dr Sc (Eng)
2, 21st Line V.O., 199106, St Petersburg
G. G. Popov
Russian Federation
Cand Sc. (Eng)
2, 21st Line V.O., 199106, St Petersburg
V. A. Zlotin
Russian Federation
2, 21st Line V.O., 199106, St Petersburg
I. U. Latipov
Russian Federation
2, 21st Line V.O., 199106, St Petersburg
A. O. Sherstneva
Russian Federation
2, 21st Line V.O., 199106, St Petersburg
I. V. Zhuikov
Russian Federation
2, 21st Line V.O., 199106, St Petersburg
References
1. Fedchenko, A.A., Iseeva, L.I., Tendentsii izmeneniya dobychi i vosproizvodstva mineralnosyrievoi bazy nefti v Rossii i mire [Trends in production of oil and reproduction mineral base oil in Russia and in the world], Zapiski Gornogo Intstituta, 2013, V. 205, pp. 266–270.
2. Ilinskii, A.A., Analiz rezultatov ekonomicheskoi otsenki resursov nefti i gaza i kolichestvennaya otsenka opredelyayushchikh ee faktorov [Analysis of the results of the economic assessment of oil and gas resources and quantification of its determining factors], Zapiski Gornogo Intstituta, 1990, V. 122, pp. 70–72.
3. Litvinenko, V.S., Tsvetkov, P.S., Dvoynikov, M.V., Buslaev, G.V., Bariery realizatsii vodorodnykh initsiativ v kontekste ustoichivogo razvitiya globalnoi energetiki [Barriers to implementation of hydrogen initiatives in the context of global energy sustainable development], Zapiski Gornogo Intstituta, 2020, V. 244, pp. 428–438. DOI:10.31897/pmi.2020.4.5
4. Kopteva, A., Kalimullin, L., Tcvetkov, P., Soares, A., Prospects and Obstacles for Green Hydrogen Production in Russia, Energies, 2021, No 14, Issue 3, p. 21. DOI: 10.3390/en14030718.
5. Ivanova, I.V., Shaber, V.M., Sovremennye perspektivy polucheniya gaza [Modern method for gas production], Zapiski Gornogo Intstituta, 2016, V. 219, pp. 403–411. DOI: 10.18454/pmi.2016.3.403.
6. Momotani, Y., Shibataa, A., Teradab , D., Tsuji, N., Hydrogen embrittlement behavior at different strain rates in low carbon martensitic steel, Materials Today: Proceedings, 2015, pp. 735–738. DOI: 10.1016/j.matpr.2015.07.387.
7. Nechaev, Y. S., Fizicheskie kompleksnye problemy stareniya, okhrupchivaniya i razrusheniya metallicheskikh materialov vodorodnoi energetiki i magistralnykh gazoprovodov [Metallic materials for the hydrogen energy industry and main gas pipelines: complex physical problems of aging, embrittlement and failure], Uspekhi Fizicheskikh Nauk, 2008, V. 178:7, pp. 709–726. DOI: 10.3367/UFNr.0178.200807b.0709.
8. Zhang, L., Li, Z., Zheng, J., Zhao, Y., Xu, P., Liu, X. et al., Influence of low temperature prestrain on hydrogen gas embrittlement of metastable austenitic stainless steels, International Journal Hydrogen Energy, 2013, No 38, pp. 11181–11187. DOI:10.1016/j.ijhydene.2013.01.011.
9. Shefer, R.W., Characterization of leaks from compressed hydrogen dispensing systems and related components, International Journal of Hydrogen Energy, 2006, No 31, pp. 1240–1260. DOI: 10.1016/j.ijhydene.2005.09.003.
10. Haonan , Ch., Zhanli, M., The study on the results of hydrogen pipeline leakage accident of different factors, IOP Conference Series: Earth and Environmental Science, 2017, No 64. DOI: 012002.10.1088/1755-1315/64/1/012002.
11. Kerimov, V.Y., Geologiya nefti i gaza [Geology of oil and gas]: a textbook, Moscow: Akademiya, 2015.
12. Hafsi, Z., Mishra, M., Elaoud, S., Hydrogen embrittlement of steel pipelines during transients, Procedia Structural Integrity, 2018, V. 13, pp. 210–217. DOI: 10.1016/j.prostr.2018.12.035.
13. Somerday, B.P., Austenitic Steels: 300-Series Stainless Steels; Stabilized Alloys: Types 321 & 347 (code 2104), Technical Reference on Hydrogen Compatibility of Materials, Marchi, Ch.S., Somerday B.P. (Eds.), Sandia National Laboratories, 2008.
14. Mejia, A.H., Brouwe r, J., Kinnon, M.M., Hydrogen leaks at the same rate as natural gas in typical low-pressure gas infrastructure, Hydrogen Energy journal, 2019, No 45 (15), p. 17.
15. Gadgeel, V.L., Johnson, D.L., Gas-phase hydrogen permeation and diffusion in carbon steels as a function of carbon content from 500 to 900 K, Journal of Materials for Energy Systems, 1979, No 1(2), pp. 32– 40.
16. Hoover, W.R., Iannucci, J.J., Robinson, S.L., Spingarn, J.R., Stoltz, R., Hydrogen compatibility of structural materials for energy storage and transmission: Annual report, 1980. DOI: 10.2172/5496938
17. Nelson , H.G., Stein , J.E., Gas-phase hydrogen permeation through alpha iron, 4130 steel, and 304 stainless steel from less than 100°C to near 600°C, Washington, D.C., National Aeronautics and Space Administration, 1973.
18. Perng, T.P., Altstetter, C.J., Effects of Deformation on Hydrogen Permeation in Austenitic Stainless Steels, Acta Metallurgica, 1986, No 34(9), pp. 1771–1781. DOI: 10.1016/0001-6160(86)90123-9.
19. Louthan , M.R. Jr., Derrick, R.G., Hydrogen transport in austenitic stainless steel, Corrosion Science, 1975, No 15(9), pp. 565–577.
20. Pauly, S., Permeability and Diffusion Data, Polymer Handbook, Brandup, J.I., Grulke, E.H. (Eds.), 2003, p. 2366. DOI: 10.1002/0471532053.bra045.
21. Bekman, I.N., Vysshaya matematika: matematichesky apparat diffuzii [Higher Mathematics: Mathematical apparatus of diffusion]: textbook for undergraduate and graduate studies, Moscow: Yurait, 2017.
22. Fromm, E., Gebhardt, E., Gazy i uglerod v metallakh, Moscow: Metallurgiya, 1980.
23. Bolobov, V.I., Latipov, I.U., Popov, G.G., Buslaev, G.V., Martynenko, Y.V., Estimation of the Influence of Compressed Hydrogen on the Mechanical Properties of Pipeline Steels, Energies, 2021, V. 14, p. 27. DOI: 10.3390/en14196085.
24. Kulabukhova, N.A., Issledovanie protsessov absorbtsii i diffuzii vodoroda v GTsK metallakh metodom molekulyarnoi dinamiki [Investigation of the processes of absorption and diffusion of hydrogen in HCC metals by the method of molecular dynamics]: Thesis for Cand. of Sc., Barnaul, 2014.
25. Pisarev, A.A., Tsvetkov, I.V., Marenkov, E.D., Yarko, S.S., Pronitsaemost vodoroda cherez metally [Permeability of hydrogen through metals], Moscow: MIFI, 2008.
26. Cherdantsev, Y.P., Chernov, I.P., Tyurin, Y.I., Metody issledovaniya sistem metal – vodorod [Methods of research of metal-hydrogen systems]: textbook, Tomsk: TPU, 2008.
27. Smirnov, L.I., Goltsov, V.A., Diffuziya i diffuzionnye yavleniya v vodorodnoi podsisteme splavov metal-vodorod [Diffusion and diffusion phenomena in the hydrogen subsystem of metal – hydrogen alloys], Alternativnaya energetika i ekologiya, 2014, No. 1 (141), pp. 111–137.
28. Hirth, J.P., Effects of hydrogen on the properties of iron and steel, Metall Trans A, 1980, No 11A, pp. 861–890. DOI: 10.1007/BF02654700.
29. Majer, G., Eberle, U., Kimmerle, F., Stanik , E., Orimo, S., Hydrogen diffusion in metallic and nanostructured materials, Physica B: Condensed Matter, 2003, V. 328, pp. 81–89. DOI: 10.1016/S0921-4526(02)01815-X.
30. Alekseeva, O.K., Kozlov, S.I., Fateev, V.N., Transportirovka vodoroda [Hydrogen transportation], Transport na alternativnom toplive, 2011, No 3 (21), pp. 18–24.
31.
Review
For citations:
Bolobov V.I., Petkova A.P., Popov G.G., Zlotin V.A., Latipov I.U., Sherstneva A.O., Zhuikov I.V. Comparative analysis of compressed hydrogen losses during its transportation through the pipelines from different materials. Voprosy Materialovedeniya. 2023;(1(113)):124-133. (In Russ.) https://doi.org/10.22349/1994-6716-2023-113-1-124-133