

Long-term high-temperature exposure effects on mechanical properties and structure of the 42XNM alloy after neutron irradiation in the VVER-1000. Part 2. Structural studies
https://doi.org/10.22349/1994-6716-2023-113-1-150-173
Abstract
The paper presents the results of structural studies of ring specimens made of the 42XNM alloy after irradiation as part of the control and protection system of the VVER-1000 reactor to a damaging dose of ~12 dpa at a temperature of ~350°C and subsequent isothermal annealings in the temperature range of 400– 1150°C (heating and holding for ~2 h). It is shown that during long-term isothermal annealing, a change in the phase composition of the alloy is observed, dislocation structures and grain-boundary segregations are annealed, and porosity evolves. It has been confirmed that decrease in the plastic properties of the 42XNM alloy after irradiation and subsequent isothermal annealing in the temperature range of 400–1000°C could be explained by the formation of precipitates of the second phases (zones of discontinuous decomposition of the solid solution with the release of α-Cr particles along the grain boundaries) and pores at the grain boundaries.
About the Authors
B. A. GurovichRussian Federation
Dr Sc. (Eng)
1 Akademika Kurchatova Square, 123182 Moscow
A. S. Frolov
Russian Federation
Cand Sc. (Eng)
1 Akademika Kurchatova Square, 123182 Moscow
E. A. Kuleshova
Russian Federation
Dr Sc. (Eng)
1 Akademika Kurchatova Square, 123182 Moscow
31 Kashirskoe shosse, 115409 Moscow
D. A. Maltsev
Russian Federation
Cand Sc. (Eng)
1 Akademika Kurchatova Square, 123182 Moscow
I. V. Fedotov
Russian Federation
1 Akademika Kurchatova Square, 123182 Moscow
D. V. Safonov
Russian Federation
Cand Sc. (Eng)
1 Akademika Kurchatova Square, 123182 Moscow
References
1. Mukherji, D., Rösler, J., Strunz, P., Gilles, R., Schumacher, G., Piegert, S., Beyond Ni-based superalloys: Development of CoRe-based alloys for gas turbine applications at very high temperatures, Int. J. Mater. Res., 2011, V. 102, No 9, pp. 1125–1132.
2. Backman , D.G., Williams J.C., Advanced Materials for Aircraft Engine Applications, Science, 1992, V. 255, No 5048, pp. 1082–1087.
3. Kear, B.H., Thompson , E.R., Aircraft Gas Turbine Materials and Processes, Science, 1980, V. 208, No 4446, pp. 847–856.
4. Pollock , T.M., Tin , S., Nickel-Based Superalloys for Advanced Turbine Engines: Chemistry, Microstructure and Properties, J. Propuls. Power, 2006, V. 22, No 2, pp. 361–374.
5. Rowcliffe, A.F., Mansur, L.K., Hoelzer, D.T., Nanstad , R.K., Perspectives on radiation effects in nickel-base alloys for applications in advanced reactors, J. Nucl. Mater., 2009, V. 392, No 2, pp. 341–352.
6. Stopher, M.A., The effects of neutron radiation on nickel-based alloys, Mater. Sci. Technol., 2017, V. 33, No 5, pp. 518–536.
7. Solonin , M., et al., Cr–Ni alloys for fusion reactors, J. Nucl. Mater., 1998, V. 258–263, pp. 1762–1766.
8. Solonin , M.I., Alekseev, A.B., Kazennov, Y.I., Khramtsov, V.F., Kondrat ev, V.P., Krasina , T.A., Rechitsky, V.N., Stepankov, V.N., Votinov, S.N., KhNM-1 alloy as a promising structural material for water-cooled fusion reactor components, J. Nucl. Mater., 1996, V. 233–237, Part 1, pp. 586–591.
9. Solonin , M.I., Radiation-Resistant Alloys of the Nickel-Chromium System, Met. Sci. Heat Treat., 2005, V. 47, No 7–8, pp. 328–332.
10. Vatulin , A.V., Kondrati ev, V.P., Rechitsk y, V.N., Solonin , M.I., Corrosion and radiation resistance of “Bochvaloy” nickel-chromium alloy, Met. Sci. Heat Treat., 2004, V. 46, No 11–12, pp. 469–473.
11. De los Reyes, M., Edwards, L., Kirk , M.A., Bhattacharyya , D., Lu , K.T., Lumpkin , G.R., Microstructural Evolution of an Ion Irradiated Ni–Mo–Cr–Fe Alloy at Elevated Temperatures, Mater. Trans, 2014, V. 55, No 3, pp. 428–433.
12. Le Brun , C., Molten salts and nuclear energy production, J. Nucl. Mater., 2007, V. 360, No 1, pp. 1–5.
13. Delpech , S., Cabet, C., Slim, C., Picard , G.S., Molten fluorides for nuclear applications, Mater. Today, 2010, V. 13, No 12, pp. 34–41.
14. Angeliu , T., Wa rd , J, Witter J., Assessing the Effects of Radiation Damage on Ni-base Alloys for the Prometheus Space Reactor System, New York: Knolls Atomic Power Laboratory, 2006.
15. Gurovich, B.A., Frolov, A.S., Kuleshova, E.A., Maltsev, D.A., Safonov, D.V., Fedotova, S.V., Kochkin, V.N., Panferov, P.P., Structural evolution features of the 42XNM alloy during neutron irradiation under VVER conditions, J. Nucl. Mater., 2021, V. 543, p. 152557.
16. Gurovich, B.A., Frolov, A.S., Kuleshova, E.A., Maltsev, D.A., Safonov, D.V., Microstructural evolution of the 42XNM alloy during a severe accident (LOCA), J. Nucl. Mater., 2022, V. 561,p. 153535.
17. Kuleshova, E.A., Fedotova, S.V., Gurovich, B.A., Frolov, A.S., Maltsev, D.A., Stepanov, N.V., Margolin, B.Z., Minkin, A.J., Sorokin, A.A., Microstructure degradation of austenitic stainless steels after 45 years of operation as VVER-440 reactor internals, J. Nucl. Mater., 2020, V. 533, p. 152124.
18. Gurovich, B.A., Frolov, A.S., Fedotov, I.V., Improved evaluation of ring tensile test ductility applied to neutron irradiated 42XNM tubes in the temperature range of (500–1100)°C, Nucl. Eng. Technol., 2020, V. 52, No 6, pp. 1213–1221.
19. Saltykov, S.A., Stereometricheskaya metallografiya [Stereometric metallography], Moscow: Metallurgiya, 1976.
20. Deutsche Gesellschaft für Metallkunde, Zeitschrift für Metallkunde, Riederer-Verlag, 1948.
21. Maziasz, P.J., Overview of microstructural evolution in neutron-irradiated austenitic stainless steels, J. Nucl. Mater., 1993, V. 205, pp. 118–145.
22. Ayanoglu , M., Motta , A.T., Microstructural evolution of the 21Cr32Ni model alloy under irradiation, J. Nucl. Mater., Elsevier, 2018, V. 510, pp. 297–311.
23. Yang, Y., Yiren , C., Yina , H., Todd , A., Appajosula , R., Irradiation Microstructure of Austenitic Steels and Cast Steels Irradiated in the BOR-60 Reactor at 320°C, 15th Int. Conf. Environ. Degrad. Mater. Nucl. Power Syst. React., John Wiley & Sons, 2012, pp. 2447–2450.
24. Ken , H., Yao, Z., Morin , G., Griffiths, M., TEM characterization of in-reactor neutron irradiated CANDU spacer material Inconel X-750, J. Nucl. Mater., Elsevier, 2014, V. 451, No 1–3, p. 88–96.
25. Allen , T.R., Cole, J.I., Kenik , E.A., Was, G.S., Analyzing the effect of displacement rate on radiation-induced segregation in 304 and 316 stainless steels by examining irradiated EBR-II components and samples irradiated with protons, J. Nucl. Mater., 2008, V. 376, No 2, pp. 169–173.
26. Kato, T., Takahashi, H., Izumiya , M., Grain boundary segregation under electron irradiation in austenitic stainless steels modified with oversized elements, J. Nucl. Mater., 1992, V. 189, No 2, pp. 167– 174.
27. Was, G.S., Bruemmer, S.M., Effects of irradiation on intergranular stress corrosion cracking, J. Nucl. Mater., 1994, V. 216, pp. 326–347.
28. Kenik , E.A., Inazumi, T., Bell, G.E.C., Radiation-induced grain boundary segregation and sensitization of a neutron-irradiated austenitic stainless steel, J. Nucl. Mater., 1991, V. 183, No 3, pp. 145–153.
29. Duh, T., Kai, J., Chen, F., Effects of grain boundary misorientation on solute segregation in thermally sensitized and proton-irradiated 304 stainless steel, J. Nucl. Mater., 2000, V. 283–287, pp. 198–204.
30. Renault, A.-E., Pokor, C., Ga rnier, J., Malaplate, J., Microstructure and Grain Boundary Chemistry Evolution in Austenitic Stainless Steels Irradiated in the BOR-60 Reactor up to 120 Dpa, 14th Int. Conf. Environ. Degrad. Mater. Nucl. Power Syst. Water React., Virginia Beach, 2009, pp. 1324–1334.
31. Jensen , R.R., Tien , J.K., Temperature and strain rate dependence of stress-strain behavior in a nickel-base superalloy, Metall. Trans. A., 1985, V. 16, No 6, pp. 1049–1068.
32. Kim, I.S., Choi, B.G., Seo, S.M., Kim, D.H., Jo, C.Y., Influence of heat treatment on microstructure and tensile properties of conventionally cast and directionally solidified superalloy CM247LC, Mater. Lett., 2008, V. 62, No 6–7, pp. 1110–1113.
33. Kim, I.S., Choi, B.G., Seo, S.M., Jo, C.Y., Mechanical Behavior of As-Cast and High Temperature Exposed Ni-Base Superalloy B1900, Mater. Sci. Forum, 2004, V. 449–452, pp. 541–544.
34. Zheng, L., Schmitz, G., Meng, Y., Chellali, R., Schlesiger, R., Mechanism of Intermediate Temperature Embrittlement of Ni and Ni-based Superalloys, Crit. Rev. Solid State Mater. Sci., 2012, V. 37, No 3, pp. 181–214.
35. Lyakishev, N.P., Diagrammy sostoyaniya dvoinykh metallicheskikh sistem [Diagrams of the state of double metal systems], Moscow: Mashinostroenie, 1996–2000.
36. Gurovich, B.A., Frolov, A.S., Maltsev, D.A., Kuleshova, E.A., Fedotova, S.V., Fazovye prevrashcheniya v obluchennom splave 42CrNiMo posle otzhiga pri povyshennykh temperaturakh, a takzhe posle uskorennogo otzhiga, modeliruyushchego maksimalnuyu proyektnuyu avariyu [Phase transformations in irradiated 42CrNiMo alloy after annealing at elevated temperatures, and also after rapid annealing, simulating the maximum design basis accident], Proc. 11th Conf. React. Mater. Sci. Russ., Dimitrovgrad, 2019.
Review
For citations:
Gurovich B.A., Frolov A.S., Kuleshova E.A., Maltsev D.A., Fedotov I.V., Safonov D.V. Long-term high-temperature exposure effects on mechanical properties and structure of the 42XNM alloy after neutron irradiation in the VVER-1000. Part 2. Structural studies. Voprosy Materialovedeniya. 2023;(1(113)):150-173. (In Russ.) https://doi.org/10.22349/1994-6716-2023-113-1-150-173