Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of mechanical properties and brittle fracture resistance for weld metal of WWER RPV

https://doi.org/10.22349/1994-6716-2023-113-1-174-188

Abstract

The results of the study of mechanical properties and brittle fracture resistance (BFR) are presented for weld metal of WWER RPV performed by automatic arc welding with use welding wire Sv-15CrNiMoTiA and ceramic flux 48AF-71. Mechanical properties are determined on the basis of test results of tensile smooth round bar. BFR are determined from impact strength tests and fracture toughness tests. The anisotropy of mechanical properties and BFR is investigated by testing the specimens with different orientations. Tests are conducted for specimens of two orientations: first orientation corresponds to the position of the specimen, in which the fracture surface is perpendicular to the axis of the weld; second orientation corresponds fracture surface parallel to the axis of t he weld. It i s shown that the weld metal performed according to above mentioned technology has no anisotropy both in mechanical properties and in BFR. An explanation of the significant scatter of BFR on the basis of the results of metallographic studies is proposed. The obtained experimental results on mechanical properties for investigated weld metal allow to use tensile smooth round bar with 3 mm diameter with transverse orientation instead of specimens with 6 mm diameter with longitudinal orientation as the scale factor and anisotropy are negligible. The correlation dependence between the values of reference temperature T0 determined by the Master Curve method and reference temperature T100 determined by the Advanced Unified Curve method and the value of critical brittleness temperature TK0 for the studied weld metal in the initial state is established.

About the Authors

E. V. Yurchenko
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



M. N. Timofeev
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



B. Z. Margolin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc (Eng)

49 Shpalernaya St, 191015 St Petersburg



S. N. Galyatkin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



References

1. State Standard GOST R 59115.14-2021: Natsionalny standart Rossiiskoi Federatsii. Obosnovanie prochnosti oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok. Raschet na soprotivlenie khrupkomu razrusheniyu korpusa vodo-vodyanogo energeticheskogo reaktora [National Standard of the Russian Federation. Substantiation of the strength of equipment and pipelines of nuclear power plants. Calculation of resistance to brittle destruction of the body of a water-water power reactor], Moscow: Russian Institute for Standardization, 2021.

2. ASTM E 1921-10ε1 , Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range, Annual Book of ASTM Standards, 2010, V. 03.01.

3. Margolin , B.Z., Gulenko, A.G., Nikolaev, V.A., Ryadkov, L.N., A new engineering method for prediction of the fracture toughness temperature dependence for RPV steels, Int. J. Pres. Ves. & Piping 80, 2003, pp. 817–829.

4. Margolin , B.Z., Gulenko, A.G., Fomenko, V.N., Kostylev, V.I., Further Improvement of the Prometey Model and Unified Curve Method, Part 2: Improvement of the Unified Curve Method. Eng.Fract.Mech., 2018, No 191, pp. 383–402.

5. State Standard GOST R 59115.6-2021: Natsionalny standart Rossiiskoj Federatsii. Obosnovanie prochnosti oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok. Metody opredeleniya kharakteristik treshchinostoikosti konstruktsionnykh materialov [The National standard of the Russian Federation Substantiation of the strength of equipment and pipelines of nuclear power plants. Methods for determining the characteristics of crack resistance of structural materials], Moscow: Russian Institute for Standardization, 2021

6. Comparison of Irradiation-Induced Shifts of KJC and Charpy Impact Toughness for Reactor Pressure Vessel Steels, NUREG/CR-6609 U.S. Nuclear Regulatory Commission FIEN Office of Nuclear Regulatory Research Washington, DC 20555-0001, Oak Ridge National Laboratory.

7. Yurchenko, E.V., Issledovanie i prognozirovanie radiacionnogo i teplovogo ohrupchivaniya materialov ekspluatiruemyh i perspektivnyh korpusov reaktorov VVER [Research and forecasting of radiation and thermal embrittlement of materials of operated and prospective VVER reactor buildings]: thesis for candidate of sciences, St Petersburg, 2015.

8. Normy rascheta na prochnost oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok (PNAEG-7-002-86) [Calculation standards for the strength of equipment and pipelines of nuclear power plants (PNAEG-7-002-86)], Gosatomnadzor SSSR, Moscow: Energoatomizdat, 1989.

9. State Standard GOST R 70431–2022: Natsionalny standart Rossiiskoi Federatsii. Materialy oborudovanya i truboprovodov atomnykh energeticheskikh ustanovok. Metody opredelenya udarnoi vyazkosty i kriticheskoi temperatury khrupkosty po rersultatam ispytanij na udarny isgib [National Standard of the Russian Federation. Materials for equipment and pipelines of nuclear power plant. Methods for determining impact strength and critical temperature of brittleness according to the results of impact bending tests], Moscow, 2022.

10. M a rgolin , B.Z., Gulenko, A.G., Fomenko, V.N., Kostylev, V.I., Further Improvement of the Prometey Model and Unified Curve Method, Part 2: Improvement of the Unified Curve Method, Eng.Fract.Mech., 2018, No 191, pp. 383–402.

11. Timofeev, M.N., Galyatkin , S.N., Fomenko, A.V., Shubin, O.V., Analiz opyta izgotovleniya korpusa reaktora i bloka verkhnego proekta VVER-TOI iz stalej 15H2NMFA kl. 1 i 15H2MFAA mod. A [Analysis of the experience of manufacturing the reactor vessel and the block of the upper VVERTOI project from 15X2NMFA class 1 and 15X2MFA-A mod. A steels], Tyazheloe mashinostroenie, 2021, No 9, pp. 9–13.

12. GOST R 50.05.12–2018: Mezhgosudarstvenny standart. Svarnye soedineniya. Metody opredeleniya mekhanicheskih svoistv [Interstate standard. Welded joints. Methods for determining mechanical properties. GOST R 50.05.12–2018], Moscow, 2018.

13. AWS B4.0:2016, Standard Methods for Mechanical Testing of Welds, American Welding Society, 2016.

14. State Standard GOST R 50.05.12–2018: Natsionalny standart Rossiiskoi Federatsii. Sistema otsenki sootvetstviya v oblasti ispolzovaniya atomnoj energii. Otsenka sootvetstviya v forme kontrolya. Kontrol radiatsionnogo okhrupchivaniya korpusa reaktora atomnoj stantsii [National Standard of the Russian Federation. Conformity assessment system in the field of nuclear energy use. Conformity assessment in the form of control. Control of radiation embrittlement of the reactor vessel of a nuclear power plant], Moscow, 2018.

15. Federalnye normy i pravila v oblasti ispolzovaniya atomnoi energii. Svarka i naplavka oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok (NP-104-18) [Federal rules and regulations for the use of Atomic Energy], Moscow, 2018.

16. ASTM E399–90(1997), Standard Test Method for Plane-Strain Fracture Toughness of Metallic Materials, ASTM International, West Conshohocken, PA, 1997.


Review

For citations:


Yurchenko E.V., Timofeev M.N., Margolin B.Z., Galyatkin S.N. Study of mechanical properties and brittle fracture resistance for weld metal of WWER RPV. Voprosy Materialovedeniya. 2023;(1(113)):174-188. (In Russ.) https://doi.org/10.22349/1994-6716-2023-113-1-174-188

Views: 260


ISSN 1994-6716 (Print)