Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The effect of heat treatment on the structure and properties of a heat-resistant nickel alloy based on Ni–Fe–Co–Nb–Ti–Ta

https://doi.org/10.22349/1994-6716-2023-114-2-48-59

Abstract

The effect of heat treatment on the structure and properties of a new weldable heat-resistant alloy based on Ni–Fe–Co–Nb–Ti–Тa with a low coefficient of thermal expansion for parts of gas turbine engines was studied. The stability of the intermetallic globular phase, the features of precipitation of lamellar particles during annealing after quenching were studied. It is shown that the structure formed during heat treatment with nanosized cuboid and rounded particles of the γ′-phase, as well as with a small amount of lamellar η-phase precipitates along the grain boundaries, provides a high set of properties and excellence heat-resistance in comparison with iron-nickel commercial alloys of a similar purpose. With uniform precipitation of the γ′-phase higher tensile strength are achieved. 

About the Authors

S. V. Ovsepyan
National Research Center “Kurchatov Institute” – VIAM
Russian Federation

Cand Sc. (Eng)

17 Radio St, 105005 Moscow



M. V. Akhmedzyanov
National Research Center “Kurchatov Institute” – VIAM
Russian Federation

17 Radio St, 105005 Moscow



E. A. Lukina
National Research Center “Kurchatov Institute” – VIAM
Russian Federation

Cand Sc. (Eng)

17 Radio St, 105005 Moscow



O. I. Rastorgueva
National Research Center “Kurchatov Institute” – VIAM
Russian Federation

17 Radio St, 105005 Moscow



References

1. Kablov, E.N., Innovatsionnye razrabotki FGUP VIAM GNTs RF po realizatsii “Strategicheskih napravleny razvitiya materialov i tekhnology ikh pererabotki na period do 2030 goda” [Innovative developments of FSUE "VIAM" of the State Research Center of the Russian Federation on the implementation of “Strategic directions for the development of materials and technologies for their processing for the period up to 2030”], Aviatsionnye materialy i tekhnologii, 2015, No 1 (34), pp. 3–33. DOI: 10.18577/2071-9140-2015-0-1- 3-33.

2. Kablov, E.N., Ospennikova , O.G., Lomberg, B.S., Sidorov, V.V., Prioritetnye napravleniya razvitiya tekhnology proizvodstva zharoprochnykh materialov dlya aviatsionnogo dvigatelestroeniya [Priority directions of development of technologies for the production of heat-resistant materials for the aircraft engine industry], Problemy chernoi metallurgii i materialovedeniya, 2013, No 3, pp. 47–54.

3. Lagow, D.W., Materials Selection in Gas Turbine Engine Design and the Role of Low Thermal Expansion Materials, JOM, 2016, No 68, pp. 2770–2775.

4. Smith , D.F., Tillack, D.J., McGrath, J.P., A Low-Expansion Superalloy for Gas-Turbine Applications, ASME, Beijing International Gas Turbine Symposium and Exposition Beijing, People’s Republic of China, 1985, pp. 1–9.

5. Sims, Ch.T., Stoloff, N.S., Hagel, U.K., Supersplavy II: Zharoprochnye materialy dlya aerokosmicheskikh i promyshlennykh energoustanovok, Moscow: Metallurgiya, 1995.

6. Incoloy 903, Special Metals Corporation. URL: www.specialmetals.com/documents/ technicalbulletins/incoloy/incoloy-alloy-903.pdf (reference date 17/01/2023).

7. Incoloy 907, Special Metals Corporation. URL: www.specialmetals.com/documents/ technicalbulletins/incoloy/incoloy-alloy-907.pdf (reference date 17/01/2023).

8. Incoloy 909, Special Metals Corporation. URL: www.specialmetals.com/documents/ technicalbulletins/incoloy/incoloy-alloy-909.pdf (reference date 17/01/2023).

9. Inconel 718, Special Metals Corporation. URL: www.specialmetals.com/documents/ technicalbulletins/inconel/inconel-alloy-718.pdf (reference date 17/01/2023).

10. Gialanella , S., Malandruccolo, A., Aerospace Alloys, Springer Nature, 2019, p. 570.

11. Finet, L., Esin, V.A., Maurel, V., Nazé, L., Composition and Temperature Stability of η and δ-Phases for Future Nickel-Base Superalloys for Turbine Disks Application, Superalloys, 2020, pp. 112– 121.

12. Reed , R.C., The Superalloys: Fundamentals and Applications, New York: Cambridge University Press, 2008.

13. Antonov, S., Huo, J., Feng, Q., Isheim, D., Seidman , D.N., Helmink , R. C., Sun, E., Tin , S. σ and η-Phase formation in advanced polycrystalline Ni-base superalloys, Materials Science and Engineering, 2017, V. A687, pp. 232–240.

14. Ernst, S.C., Baeslack III, W.A., Lippold, J.C., Weldability of high-strength, low-expansion superalloys, Welding Research Supplement, 1989. V. 7, No 4, рр. 418–430.

15. Balachander, M., Microstructural characterization and thermal fatigue study of a coated Incoloy 909 Superalloy, A Thesis Submitted to The Faculty of Graduate Studies In Partial Fulfillment of the Requirements for the Degree of Doctor оf Philosophy, Department of Mechanical and Manufacturing Engineering University of Manitoba Winnipeg, Manitoba, 2010, р. 264.

16. Liu, F.C., Lyu, F., Liu , F.G., Lin , X., Huang, Ch.P., Laves phase control of Inconel 718 superalloy fabricated by laser direct energy deposition via δ aging and solution treatment, Journal of Materials Research and Technology, 2020,V. 9, Issue 5, pр. 9753–9765.

17. Kablov, E.N., Evgenov, A.G., Mazalov, I.S., Shurtakov, S.V., Za its ev, D.V., Prager, S.M., Evolyutsiya struktury i svoistv vysokokhromistogo zharoprochnogo splava VZh159, poluchennogometodom selektivnogo lazernogo splavleniya [Evolution of the structure and properties of the high-chromium heat-resistant alloy VJ159 obtained by selective laser fusion]: Part 1, Materialovedenie, 2019, No 3, pp. 9–17.

18. Kablov, E.N., Letnikov, M.N., Ospennikova, O.G., Bakradze, M.M., Shestakova, A.A., Osobennosti formirovaniya chastic uprochnyayushchej γ'-fazy v protsesse stareniya vysokolegirovannogo zharoprochnogo deformiruemogo nikelevogo splava VZh175-ID [Features of the formation of particles of the strengthening γ'-phase in the aging process of high-alloy heat-resistant deformable nickel alloy VJ175-ID], Trudy VIAM, 2019, No 9 (81), pp. 3–14. URL: http: //www. viam-works.ru (reference date 17/01/2023). DOI: 10.18577/2307-6046-2019-0-9-3-14.

19. Lomberg, B.S., Shestakova , A.A., Bakradze, M.M., Karachevt s ev, F.N., Issledovanie stabilnosti γ′-fazy razmerom menee 100 nm v zharoprochnom nikelevom splave VZh175-ID [Investigation of the stability of the γ'-phase with a size of less than 100 nm in a heat-resistant nickel alloy VJ175-ID], Aviatsionnye materialy i tekhnologii, 2018, No 4, pp. 3–10. DOI: 10.18577/2071-9140-2018-0-4-3-10.

20. Shestakova , A.A., Karachevt s ev, F.N., Zhebelev, N.M., Issledovanie vliyaniya temperatury stareniya na strukturno-fazovye prevrashcheniya v splave VZh177 [Investigation of the effect of aging temperature on structural-phase transformations in the VJ177 alloy], Trudy VIAM, 2018, No 5. Ст.01. URL: http://www.viam-works.ru. DOI: 10.18577/2307-6046-2018-0-5-3-11.

21. Lomberg, B.S., Shestakova , A.A., Letnikov, M.N., Bakradze, M.M., Vliyanie temperatury i napryazhenij na kharakter nanochastits γʹ-fazy v splave VZh175-ID [Influence of temperature and stresses on the character of γʹ-phase nanoparticles in the VJ175-ID alloy], Trudy VIAM, 2019, No 12. Art. 01. URL: http://www.viam-works.ru. DOI: 10.18577/2307-6046-2019-0-12-3-10.

22. Forbes Jones, R.M., Jackman, L.A., The Structural Evolution of Superalloy Ingots during Hot Working, JOM, 1999, V. 5, Issue 1, pp. 27–31.

23. Antonov, S., Detrois, M., Helmink, R.C., Tin, S., Precipitate phase stability and compositional dependence on alloying additions in γ–γ′–δ–η Ni-base superalloys, Journal of Alloys and Compounds Elsevier, 2015, V. 626, pp. 76–86.

24. Zharoprochny deformiruemy splav na osnove nikelya s nizkim temperaturnym koeffitsientom lineinogo rasshireniya i izdelie, vypolnennoe iz nego: pat. 2721261 [Heat-resistant deformable nickel-based alloy with a low temperature coefficient of linear expansion and a product made of it: patent 2721261], RF No 2019140925; Appl. 11.12.19; Publ. 18.05.20, Bul. No 14.

25. Babaie Sangetabi, S.S., Abbasi, S.M., Mahdavi, R., Experimental selection of the initial dissolution treatment temperature range for the subsequent cold rolling of IN907 superalloy sheet, Heliyon, 2022, V. 8, Issue 8, p. e10138.

26. Azadian , S., Wei, L.-Y., Warren , R., Delta phase precipitation in Inconel 718, Materials Characterization, 2004, No 53, рр. 7–16.

27. Boussinot, G., Finel, A., Le Bouar, Y., Phase field modeling of bimodal microstructures in nickel-base superalloys, Acta. Mater., 2009, No 57, рр. 921–931.

28. Antolovich, S.D, Armstrong, R.W., Plastic strain localization in metals: origins and consequences, Progress in Materials Science, 2014, No 59, pp. 1–160. DOI: 10.1016/j.pmatsci.2013.06.001.

29. Zhao, L., He, J., Tao, W., Shuhong, F., Yong, Z., Microstructure Evolution of GH2909 Low Expansion Superalloy During Heat Treatment, Acta Metall Sin, 2022, No 58 (9), рр. 1179–1188.

30. Deformiruemye zharoprochnye stali i splavy [Deformable heat-resistant steels and alloys], V. 2, Aviatsionnye materialy i tekhnologii, 2018, Moscow: VIAM.


Review

For citations:


Ovsepyan S.V., Akhmedzyanov M.V., Lukina E.A., Rastorgueva O.I. The effect of heat treatment on the structure and properties of a heat-resistant nickel alloy based on Ni–Fe–Co–Nb–Ti–Ta. Voprosy Materialovedeniya. 2023;(2(114)):48-59. (In Russ.) https://doi.org/10.22349/1994-6716-2023-114-2-48-59

Views: 314


ISSN 1994-6716 (Print)