Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Dose dependences for materials of vver pressure vessels and their support structures

https://doi.org/10.22349/1994-6716-2023-114-2-166-194

Abstract

The basic equations for structural integrity assessment on brittle fracture criterion are presented. The main mechanisms of radiation and thermal embrittlement of materials used for WWER RPV (15Kh2MFA, 15Kh2NMFA grade steels and its weld metal) and their support structures (St.3, 09G2S grade steels and its weld metal). The main considerations for construction of the trend curves are given and various types of trend curves are presented. The trend curves taken into account metallurgical and operational factors, such as content of alloying and impurity elements, neutron fluence, operating time and irradiation temperature. The analysis of the neutron flux effect under different dominant mechanisms of embrittlement of RPV materials is presented. The effect of irradiation temperature on contribution of different mechanisms of radiation embrittlement typical for materials of WWER RPV and SS is considered. 

About the Authors

B. Z. Margolin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr. Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



E. V. Yurchenko
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand. Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



References

1. ASTM E1921-02 2002: Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range, Annual Book of ASTM Standards, 2002, V. 03.01.

2. Margolin, B.Z., Gulenko, A.G, Nikolaev, V.A., Ryadkov, L.N., A new engineering method for prediction of the fracture toughness temperature dependence for RPV steels, Int. J. Pres. Ves. and Piping, 2003, pp. 817–829.

3. Margolin, B.Z., Gulenko, A.G., Fomenko, V.N., Kostylev, V.I., Further improvement of the Prometey model and unified curve method. Part 2. Improvement of the unified curve method, Eng. Fracture Mech., 2018, V. 191, pp. 383–402.

4. State National Standard GOST R 59115.6–2021: Obosnovanie prochnosti oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok. Metody opredeleniya kharakteristik treshchinostoikosti konstruktsionnyh materialov [Substantiation of the strength of equipment and pipelines of nuclear power plants. Methods for determining the characteristics of crack resistance of structural materials].

5. State National Standard GOST R 59115.14–2021: Obosnovanie prochnosti oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok. Raschet na soprotivlenie khrupkomu razrusheniyu korpusa vodo-vodyanogo energeticheskogo reaktora [Substantiation of the strength of equipment and pipelines of nuclear power plants. Calculation of resistance to brittle destruction of the body of a water-water power reactor].

6. NUREG/CR-6609 U.S., Comparison of Irradiation-Induced Shifts of KJC and Charpy Impact Toughness for Reactor Pressure Vessel Steels, Nuclear Regulatory Commission FIEN Office of Nuclear Regulatory Research Washington, DC 20555-0001, Oak Ridge National Laboratory.

7. Yurchenko, E.V., Issledovanie i prognozirovanie radiatsionnogo i teplovogo okhrupchivaniya materialov ekspluatiruemykh i perspektivnykh korpusov reaktorov VVER [Research and forecasting of radiation and thermal embrittlement of materials of operated and prospective VVER reactor buildings], Abstract of the thesis for the degree of Candidate of Sciences (Eng), St Petersburg, 2015.

8. Margolin , B.Z., Shvetsova , V.A., Gulenko, A.G., Radiation embrittlement modeling in multi-scale approach to brittle fracture of RPV steels, Int. J. of Fracture, 2013, V. 179, Is. 1, pp. 87–108.

9. Margolin , B.Z., Shvetsova , V.A., Gulenko, A.G., Kostylev, V.I., Prometey local approach to brittle fracture: development and application, Eng. Fracture Mech., 2008, V. 75, pp. 3483–3498.

10. Margolin , B., Yurchenko, E., Potapova , V., Pechenkin , V., On the Modelling of Thermal Aging through Neutron Irradiation and Annealing, Advances in Materials Science and Engineering, 2018, Article ID 7175083, pp. 1–9. URL: https://doi.org/10.1155/2018/7175083

11. Alekseenko, N.N., Amaev, A.D., Gorynin , I.V., Nikolaev, V.A., Radiation Damage of Nuclear Power Plant Pressure Vessel Steels, Am. Nucl. Soc., 1997.

12. IAEA-EBP-WWER-06, WWER-440-230, Reactor Pressure Vessel Integrity. A publication of the extrabudgetary programme on the safety of WWER and RBMK nuclear power plants, IAEA-EBP-WWER-06, IAEA, Vienna, August, 1996.

13. Ahlstrand , R., Margolin , B., Akbashev, I., Chyrko, L., Kostylev, V., Yurchenko, E., Piminov, V., Nikolaev, Yu., Koshkin , V., Kharchenko, V. Bukhanov, V., TAREG2.01/00 project. Validation of neutron embrittlement for VVER 1000 and 440/213 RPVs, with emphasis on integrity assessment, Progress in Nuclear Energy, 2012, pp. 52–57.

14. Hawthorne, J.R., Radiation embrittlement, Embrittlement of engineering alloys, Elsevier, 1983.

15. Margolin , B.Z., Yurchenko, E.V., Morozov, A.M., Pirogova , N.E., Brumovsky, M., Analysis of a link of embrittlement mechanisms and neutron flux effect as applied to reactor pressure vessel materials of WWER, J. Nucl. Mater., 2013, V. 434, pp. 347–356.

16. Margolin , B.Z., Yurchenko, E.V., Porogovye i predelnye znacheniya kontsentratsii primesnykh elementov v materiale korpusov reaktorov tipa VVER [Threshold and limit values of concentrations of impurity elements in the material of VVER reactor housings], Voprosy Materialovedeniya, 2015, No 2 (86), pp. 152–163.

17. Miller, M.K., Rassell, K.F., Kocik , J., Keilova , E., Embrittlement of low copper VVER 440 surveillance samples neutron-irradiated to high fluences, J. Nucl. Mater., 2000, V 282, pp. 83–88.

18. Pareige, P., Stoller, R., Russel, K., Miller, M., Atom probe characterization of the microstructure of nuclear pressure vessel surveillance material after neutron irradiation and after annealing treatments, J. Nucl. Mater., 1997, V. 249, pp. 165–174.

19. Debarberis, L., Kryukov, A., Gillemot, F., Acosta , B., Sevini, F., Semi-mechanistic analytical model for radiation embrittlement and re-embrittlement data analysis, Int J. Pressure Vessels and Piping, 2005, No 82, pp. 195–200.

20. Kryukov, L.A., Debarberis, L., Ballesteros, A., et al., Integrated analysis of WWER-440 RPV weld re-embrittlement after annealing, J. Nucl. Mater., 2012, V. 429, pp. 190–200.

21. Erak , D.Yu., Materialovedcheskoe obosnovanie ekspluatatsii korpusov reaktorov VVER za predelami proektnogo sroka sluzhby [Materials science substantiation of the operation of VVER reactor housings beyond the design service life]: Abstract for thesis for the degree of Dr. of Sc. (Eng), Мoscow, 2013.

22. Karzov, G.P., Margolin , B.Z., Teplu k hina , I.V., Piminov, V.A., Povyshenie bezopasnosti ekspluatatsii energeticheskikh ustanovok tipa VVER na osnove sovershenstvovaniya stali dlya korpusov reaktorov [Improving the safety of operation of VVER-type power plants based on the improvement of steel for reactor housings], Voprosy Materialovedeniya, 2014, No 2 (78), pp. 184–198.

23. IAEA-TECDOC-1442, Brumovsky, M., et al., Guidelines for prediction of irradiation embrittlement of operating WWER-440 reactor pressure vessels, Vienna: IAEA, 2005.

24. Gurovich , B.A., Kuleshova , E.A., Frolov, A.S., Zhurko, D.A., Erak , D.Yu., Maltsev, D.A., Komolov, V.M., Strukturnye issledovaniya stalei korpusov reaktorov dlya novogo pokoleniya reaktorov tipa VVER [Structural studies of reactor vessel steels for a new generation of VVER type reactors], Voprosy atomnoi nauki i tekhniki (VANT), 2013, No 2 (84), pp. 79–84.

25. Utevsk y, L.M., Glikman , E.E., Kark , G.S., Obratimaya otpusknaya khrupkost stali i splavov zheleza [Reversible tempering brittleness of steel and iron alloys], Moscow: Metallurgiya 1987.

26. Margolin , B.Z., Nikolaev, V.A., Yurchenko, E.V., Nikolaev, Yu.A., Erak , D.Yu., Nikolaeva , A.V., Analysis of embrittlement of WWER-1000 RPV materials, Int. J. Pres. Ves. and Piping, 2012, No 89, pp. 178–186.

27. Miller, M.K., Chernobaeva , A.A., Shtrombakh , Ya I., Russel, K.F., Nanstad , R.K., Erak , D.Yu., Zabusov, O.O., Evolution of the nanostructure of VVER-1000 RPV materials under neutron irradiation and post irradiation annealing, J. Nucl. Mater., 2009, V. 385, pp. 615–622.

28. IAEA TECDOC-1441, Effects of nickel on irradiation embrittlement of light water reactor pressure vessel steels, IAEA, Vienna, 2005.

29. Nikolaev, Yu., Radiation Embrittlement of Cr-Ni-Mo and Cr-Mo RPV steels, Journal of ASTM International, 2007, V. 4, Is. 8, ID JAI 100695.

30. Kryukov, A., Erak , D., et al., Extended analysis of VVER-1000 surveillance data, Int. J. Pres. Ves. and Piping, 2002, No 79, pp. 661–664.

31. Williams, T.J., Ellis, D., English , C.F., Hyde, J., A model of irradiation damage in high nickel submerged arc welds, Int. J. Pres. Ves. and Piping, 2002, No 97, pp. 649–660.

32. Teplova , E.D., Teplov, N.S., Mironenko, E.A., Vliyanie nikelya i medi na teplovuyu khrupkost konstruktsionnoi khromomolibdenovoi stali [The influence of nickel and copper on the thermal fragility of structural chromium-molybdenum steel], Metallovedenie, 1959, No 3. pp. 39–50.

33. Margolin , B.Z., Yurchenko, Е.V., Kostylev, V.I., Morozov, А.М., Varovin , A.Ya., Rogozkin , S.V., Nikitin , А.А., Radiation embrittlement of support structure materials for WWER RPVs, J. Nucl. Mater., 2018, V 508, pp. 123–138.

34. Margolin , B.Z., Yurchenko, E.V., Morozov, A.M., Varovin , A.Ya., Issledovanie vliyaniya postradiatsionnogo otzhiga na vosstanovlenie svoistv materialov opornykh konstruktsii korpusov reaktorov VVER-440. Ch. 1 [Postanovka zadachi i rezultaty ispytanii [Investigation of the effect of radiation annealing on the restoration of the properties of the materials of the supporting structures of the VVER-440 reactor housings. Part 1. Problem statement and test results], Voprosy Materialovedeniya, 2022, No 2 (110), pp. 184–198.

35. State National Standard GOST R 70414–2022: Konstruktsii opornye korpusa vodo-vodyanogo energeticheskogo reaktora. Raschet na prochnost [The structures of the supporting housings of the water-water power reactor. Calculation of strength].

36. Nikolaev, V.A., Ryadkov, L.N., Rol spektra i plotnosti neitronnogo potoka v radiatsionnom okhrupchivanii stali marki 15Kh2MFA i metalla ee svarnykh shvov [The role of the spectrum and density of the neutron flux in the radiation embrittlement of steel grade 15Kh2MFA and the metal of its welds], Yubileiny sbornik nauchnykh statei. Radiatsionnoe materialovedenie i konstruktsionnaya prochnost reaktornykh materialov, St Petersburg: Prometey, 2002, pp.178–199.

37. Stoller, R.E., The effect of neutron flux on radiation-induced embrittlement in reactor pressure vessel steels, Journal of ASTM international, 2004, V.1, No 4.

38. Soneda , N., Dohi, K., Nishida , K., Nomoto, A., et al., Flux effect on neutron radiation embrittlement of reactor pressure vessel steels irradiated to high fluences, International Symposium FONTEVRAUD 7, Avignon, France, 26–30 September, 2010. NO07-A080-T01.

39. Chernobaeva , A.A., Kryukov, A.M., Amaev, A.D., Erak , D.Yu., Platonov, P.A., Shtrombakh , Y.I., The Role of Flux Effect on Radiation Embrittlement of WWER-440 Reactor Pressure Vessel Materials, Proc. of the IAEA Technical Meeting, Gus Khrustalny, Russia, 2008, pp. 38–53.

40. EUR 21835 EN, Embrittlement and Mechanistic Interpretation of Reactor Pressure Vessel and Internal Materials, 2005, pp. 38–53.

41. Erak , D.Yu., Gurovich , B.A., Shtrombakh , Y.I., Zhurko, D., Degradation and recovery of mechanical properties of WWER-1000 pressure vessel materials, International Symposium FONTEVRAUD 7, Avignon, France, 26–30 September, 2010, NO12-A096-T01.

42. Eason , E.D., Odette, G.R., Nanstad , R.K., Yamamoto, T.A., Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels, ORNL/TM-2006/530, 2007.

43. Kirk, M., Assessment of flux effect exhibited by IVAR database, Proc. of the IAEA Technical Meeting on Radiation embrittlement and Life Management of Reactor Pressure Vessels, Znojmo, Czech Republic, 18–22 October, 2010.

44. Williams, T., On the Differences and Commonalities, Western RPV steel embrittlement data after MTR or NPP irradiation. PAMELA Workshop, Mol, September 19–21, 2011.

45. Platonov, P.A., Shtrombak h , Ya.I., Nikolaev, Yu.A., Analiz sostoyaniya metalla korpusov destvuyushchikh reaktorov [Analysis of the state of the metal of the housings of operating reactors], Voprosy atomnoi nauki i tekhniki. Ser.: Fizika radiatsionnykh povrezhdenii i radiatsionnoe materialovedenie, 2002, No 6, pp. 3–12.

46. Kul eshova , E.A., Gurovich , B.A., Shtrombak h , Ya.I., Frolov, A.S., Fedotova , S.V., Maltsev, D.A., Krikun , E.V., Zhurko, D.A., Chernobaeva , A.A., Evoliutsiya struktury i svoistv stali 15Kh2NMFAA KR VVER-1000 pod vozdeistviem nizkotemperaturnogo oblucheniya [Evolution of the structure and properties of steel 15Kh2NMFAA KR VVER-1000 under the influence of low-temperature irradiation], Materials of the 14th international conference “Problemy materialovedeniya pri proektirovanii, izgotovlenii i ekspluatatsii oborudovaniya AES” [Problems of materials science in the design, manufacture and operation of NPP equipment], Mainstream-2016.


Review

For citations:


Margolin B.Z., Yurchenko E.V. Dose dependences for materials of vver pressure vessels and their support structures. Voprosy Materialovedeniya. 2023;(2(114)):166-194. (In Russ.) https://doi.org/10.22349/1994-6716-2023-114-2-166-194

Views: 186


ISSN 1994-6716 (Print)