Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Scientific and technological bases for creation of cold-resistant steel with a guaranteed yield strength of 315–750 MPa for the Arctic. Part 2. Technology of production, structure and properties of sheet hire performance

https://doi.org/10.22349/1994-6716-2018-96-4-14-41

Abstract

On the basis of the conducted research, a complex of scientific and technological methods has been developed for various technological processes (thermomechanical processing with accelerated cooling, quenching from rolling and separate furnace heating with high-temperature tempering). The developed method provides the formation of the structure of acceptable heterogeneity and anisotropy according to different morphological and crystallographic parameters throughout the thickness of rolled products up to 100 mm from low alloy steels with a yield strength of at least 315–460 MPa and up to 60 mm from economically alloyed steels with a yield strength of at least 500–750 MPa. The paper presents results of the industrial implementation of hot plastic deformation and heat treatment schemes for the production of cold rolled steel sheet with yield strength of at least 315–750 MPa for the Arctic. The structure of sheet metal thickness is given, providing guaranteed characteristics of strength, ductility, cold resistance, weldability and crack resistance.

About the Author

O. V. Sych
NRC ”Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc, (Eng)

49, Sphalernaya St, 191015, St Petersburg



References

1. Sych O. V. Nauchno-tekhnologicheskie osnovy sosdanija khladostoikikh staley s garantirovannym predelom tekuchesty 315–750 MPa dlya Arktiki. Chast 1. Printcipy legirovanija i trebovanija k strukture listovogo prokata [Scientific and technological bases for creation of cold-resistant steel with a guaranteed yield strength of 315–750 MPa for the Arctic. Part 1: Principles of alloying and requirements for sheet metal structure] // Voprosy Materialovedeniya, 2018, No 3 (95), pp. 22–476.

2. Gorynin, I.V., Rybin, V.V., Malyshevsky, V.A., Khlusova, E.I., Printsipy legirovaniya, fazovye prevrashcheniya, struktura i svoistvakhladostoikikh svarivaemykh sudostroitelnykh stalei [Principles of alloying, phase transmutations, structure and properties ofcold-resistant welded shipbuilding steels], Metallovedenie i Termicheskaya Obrabotka Metallov, 2007, No 1, pp. 9–15.

3. Gorynin, I.V., Rybin, V.V., Malyshevsky , V.A., Khlusova, E.I., Khladostoikie stali dlya tekhnicheskikh sredstv osvoeniya arkticheskogo shelfa [Cold-resistant steels for technical devices for development of arctic shelf], Voprosy Materialovedeniya, 2009, No 3, pp. 108–126.

4. Kazakov, A.A., Kiselev, D.V., Sovremennye metody otsenki kachestva struktury metallov na osnove panoramnykh issledovanii s pomoshchyu analizatora izobrazhenii Thixomet[Modern methods of metals structure quality control based on panoramic researches with Thixomet image analyzer], Togliatti: Togliatti State University, 2013, V. 5, p. 421.

5. Kazakov, A.A., Kazakova, E.I., Kiselev, D.V., Motovilina, G.D., Razrabotka metodov otsenki mikrostrukturnoi neodnorodnosti trubnykh stalei[Development of microstructural heterogeneity of pipe steel evaluation methods],Chernye metally, 2009, No 12, pp. 12–15.

6. Gorelik, S.S., Dobatkin, S.V., Kaputkina, L.M., Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys], Moscow: MISiS, 2005, p. 432.

7. Rybin, V.V., Bolshye plasticheskie deformatsii i razrushenie metallov[Big plastic deformations and destruction of metals], Moscow: Metallurgiya, 1986, p. 224.

8. Kodzhaspirov, G.E., Rudskoi, A.I., Rybin, V.V., Fizicheskie osnovy i resursosberegayushchie tekhnologii izgotovleniyaizdelii plasticheskim deformirovaniem[Physical basis and resourcesaving technologies of product manufacture by plastic deformation], St Petersburg: Nauka, 2006, p. 349.

9. Hasterkamp, F., Hulka, K., Matrosov, Yu.I., Morozov, Yu.D., Efron, L.I., Stolyarov, V.I., Chevskaya, O.N., Niobiisoderzhashchie nizkolegirovannye stali[Niobiumcontaining low-alloyed steels], Moscow: Intermet Inzhiniring, 1999, p. 94.

10. Rybin, V.V., Rubtsov, A.S., Kodzhaspirov, G.E., Strukturnye prevrashcheniya v stali pri prokatke s razlichnoi stepenyu i drobnostyu deformatsii [Structure transmutations in steel at the rolling with different degree and graininess of deformation], Fizika Metallov i Metallovedenie, 1984, V. 58, No 4, pp. 774–781.

11. Brown, E.L., De Ardo, A.J., On the origin of equiaxed austenite grains that result from the hot rolling of steel, Metallurgical Transactions, 1981, V. 12A, pp. 39–47.

12. Sych, O.V., Kruglova, A.A., Schastlivtsev, V.M., Tabatchikova, T.I., Yakovleva, I.L., Vliyanie vanadiya na dispersionnoeuprochnenie pri otpuske vysokoprochnoi trubnoi stali s razlichnoi iskhodnoi strukturoi [The effect of vanadium on dispersion hardening of high-strength pipe steel with different initial structure], Fizika Metallov i Metallovedenie, 2016, V. 117, No 12, pp. 1321–1331.

13. Kruglova, A.A., Legostaev, Yu.L., Khlusova, E.I., Issledovanie temperaturnodeformatsionnykh rezhimovdinamicheskoi rekristallizatsii stali marki AB-1[Study of temperature-stain modes of dynamic recrystallization of AB-1 steel], Sudostroitelnaya Promyshlennost, 1988, No 8, pp. 12–16.

14. Bianchi, J.G., Karialainen, L.P., Modelling of dynamic and metadynamic recrystallization during bar rolling of a medium carbon spring steel, Journal of Materials Processing Technology, 2005, No 160, pp. 267–277.

15. Olasolo, M., Uranga, P., Rodriguez-Ibabe, J.M., Lуpez, B., Effect of austenite microstructure and cooling rate on transformation characteristics in a low-carbon Nb–V microalloyed steel, Materials Science and Engineering A, 2011, V. 528, pp. 2559–2569.

16. Miao, C.L., Shang, C.J., Zhang, G.D., Subramanian, S.V., Recrystallization and strain accumulation behaviors of high Nb-bearing line pipe steel in plate and strip rolling, Materials Science and Engineering A, 2010 V. 527, pp. 4985–4992.

17. Pereda, B., Fernandez, A.I., Lopez, B., Effect of Mo on dynamic recrystallization behavior on Nb-Mo micro-alloyed steels, ISIJ International, 2007, V. 47, No 6, pp. 860–868.

18. Fernandez, A.I., Uranga, P., Lopez, B., Rodrigues-Ibabe, J.M., Dynamic recrystallization behavior covering a wide austenite grain size range inNb and Nb-Ti Microalloyed steels, Materials Science and Engineering A, 2001, V. A361, pp. 367–376.

19. Hodgson, P.D., Zahiri, S.H., Whale, J.J., The static and metadynamic recrystallization behavior of an X60 Nb microalloyed steel, ISIJ International, 2004, V. 44, No 7, pp. 1224–1229.

20. Dehgan-Manshadi, A., Barnett, M., Hodgson, P., Hot deformation and recrystallization of austenitic stainless steel: Part 1. Dynamic recrystallization, Metal. Mater. Trans, 2008, V. 39A, pp. 1359–1370.

21. Morito, S., Saito, H., Ogawa, T., Furuhara, T., Maki, T., Effect of austenite grain size on the morphology and crystallography oflath martensite in low-carbon steels, ISIJ International, 2005, V. 45, No 1, pp. 91–94.

22. Zisman, A.A., Khlusova, E.I., Soshina, T.V., Issledovanie rekristallizatsii austenita stali 09HN2MD v usloviyakh goryachei prokatki metodom relaksatsii napryazhenii [Study of recrystallization of 09KhN2MD steel austenite in conditions of hot rolling by relaxation of tensions], Voprosy Materialovedeniya, 2012, No 2 (70), pp. 16–28.

23. Soshina , T.V., Zisman, A.A., Khlusova, E.I., Vliyanie mikrolegirovaniya niobiem na rekristallizatsionnye potsessy v austenite nizkouglerodistykh legirovannykh stalei [Influence of micro-alloying by niobium on recrystallization process inaustenite of low-carbon alloyed steels], Voprosy Materialovedeniya, 2013, No 1 (73), pp. 31–36.

24. Chastukhin, A.V., Ringinen, D.A., Hadeev, G.E., Efron, L.I., Kinetika staticheskoi rekristallizatsii austenita mikrolegirovannykh niobiem trubnykh stalei [Kinetics of static recrystallization of micro-alloyed by niobium pipe steels austenite], Metallurg, 2015, No 12, pp. 33–38.

25. Chastukhin, A.V., Ringinen, D.A., Efron, L.I., Astafev, D.S., Golovin, S.V., Razrabotka modelei strukturoobrazovaniya austenita dlya sovershenstvovaniya strategii goryachei prokatki trubnykh stalei [Development of austenite structure formation models for improving the strategies of pipe steels hot rolling], Problemy Chernoi Metallurgii i Materialovedeniya, 2016, No 3, pp. 39–53.

26. Orlov, V.V., Printsipy upravlyaemogo sozdaniya strukturnykh elementov nanorazmernogo masshtaba v trubnykh stalyakh pri znachitelnykh plasticheskikh deformatsiyakh[Principles of manages creation of structure elements of nano-sized scale in pipe steels at significant plastic deformations], Voprosy Materialovedeniya, 2011, No 2 (66), pp. 5–17.

27. Sych, O.V., Khlusova, E.I., Orlov, V.V., Kruglova, A.A., Usovershenstvovanie khimicheskogo sostava i tekhnologicheskikh rezhimov proizvodstva shtripsa K65-K70 (X80-X90) na baze imitatsionnogo modelirovaniya [Improvement of chemicalcomposition and technological modes of K65-K70 (X80-X90) strips production based on simulation modeling], Metallurg, 2013, No 2, pp. 50–58.

28. Patent 2465346, Russian Federation. Production of high-strength strips for mine pipelines. Publ. 27.10.2012.

29. Korotovskaya, S.V., Orlov, V.V., Khlusova, E.I., Upravlenie protsessami strukturoobrazovaniya pri termomekhanicheskoi obrabotke sudostroitelnykh i trubnykh stalei unifitsirovannogo khimicheskogo sostava [Management of structure formation at thermomechanical treatment of shipbuilding and pipe steels of unified chemical composition processes], Metallurg, 2014, No 5, pp.71–78.

30. Khlusova, E.I., Orlov, V.V., Mikhailov, M.S., Osobennosti formirovaniya struktury tolstolistovoi nizkouglerodistoi stali pri termomekhanicheskoi obrabotke [Features of formation of thick-plate low-carbon steel structure at thermomechanical treatment], Deformatsiya i Razrushenie Materialov, 2007, No 6, pp. 18–24.

31. Schastlivtsev, V.M., Tabatchikova, T.I., Yakovleva, I.L., Delgado-Reyna, S.Yu., Golosienko, S.A., Pazilova, U.A., Khlusova, E.I., Vliyanie termomekhanicheskoi obrabotki na soprotivlenie khrupkomu razrusheniyu nizkouglerodistoi nizklegirovannoi stali[Influence of thermomechanical treatment on brittle fracture resistance of low-carbon low-alloyed steel], Fizika Metallov i Metallovedenie, 2015, V. 116, No 2, pp. 199–209.

32. Khlusova, E.I., Golosienko, S.A., Motovilina, G.D., Pazilova, U.A., Vliyanie legirovaniya na strukturu i svoistva vysokoprochnoi khladostoikoi stali posle termicheskoi i termomekhanicheskoi obrabotki [Influence of alloying on structure and properties of high-strength cold-resistant steel after thermal and thermomechanical treatment], Voprosy Materialovedeniya, 2007, No 1 (49), pp. 20–31.

33. Golosienko, S.A., Motovilina, G.D., Khlusova, E.I., Vliyanie struktury, sformirovannoi pri zakalke, na svoistva vysokoprochnoi khladostoikoi stali posle otpuska[Influence of structure formed by quenching on properties ofhigh-strength cold-resistant steel after tempering], Voprosy Materialovedeniya, 2008, No 1 (53), pp. 33–46.

34. Khlusova, E.I., Zisman, A.A., Soshina, T.V., Postroenie i ispolzovanie kart strukturnykh izmenenii pri goryachei deformatsii austenita nizkouglerodistoi stali 09HN2MDF dlya optimizatsii promyshlennykh tekhnologii [Construction and use of maps of structure changes at hot deformation of low-carbon 09KhN2MDF steel austenite for optimization of industrial technologies], Voprosy Materialovedeniya, 2013, No 1 (73), pp. 37–48.

35. Pazilova, U.A., Khlusova, E.I., Knyazyuk, T.V., Vliyanie rezhimov goryachei plasticheskoi deformatsii pri zakalke s prokatnogo nagreva na strukturu i svoistva ekonomnolegirovannoi vysokoprochnoi stali [Influence of modes of hot plastic deformation at hardening with rolling heating on structure and properties of economical-alloyed high-strength steel], Voprosy Materialovedeniya, 2017, No 3 (91), pp. 7–19.

36. Golubeva, M.V., Sych, O.V., Khlusova, E.I., Motovilina, G.D., Svyatysheva , E.V., Rogozhkin, S.V., Lukyanchuk, A.A., Izmenenie struktury pri otpuske vysokoprochnoi ekonomnolegirovannoi stali marki 09KhGN2MD [Change of structure at high-strength economical-alloyed 09KhGN2MD steel], Voprosy Materialovedeniya, 2018, No 1 (93), pp. 15–26.

37. Khlusova, E.I., Semicheva, T.G., Protsessy formirovaniya austenitnogo i ferritnogo zerna pri termicheskoi obrabotke. Strukturnaya nasledstvennost [Process of forming of austenite and ferrite seed at thermal treatment. Structural heredity], St Petersburg: NPO, Materialy dlya Sudostroeniya i Morskoi Tekhniki, 2009, V. 1, pp. 83–100.

38. Golubeva, M.V., Sych, O.V., Khlusova, E.I., Motovilina, G.D., Issledovanie mekhanicheskikh svoistv i kharaktera razrusheniya novoiekonomnolegirovannoi khladostoikoi stali s garantirovannym predelom tekuchesti 690 MPa [Study of mechanical properties and destruction nature of new economical-alloyed cold-resistant steel with guaranteed yield strength 690 MPa], Aviatsionnye Materialy i Tekhnologii, 2017, No 4 (49), pp. 19–24.

39. Janjusevic, Z., Gulisija, Z., Mihailovic, M., Pataric, A., The investigation of applicability of the Hollomon-Jaffe equation on tempering the HSLA steel, CI&CEQ, 2009, No 15 (3), pp. 131– 136.

40. Jaffe, L., Gordon, E ., Temperability of Steels, Transactions of American Society for Metals, 1957, No 49, pp. 359–371.

41. Hollomon, J., Jaffe, L., Time-temperature relations in tempering steel, Metal Technology, 1945, No 12, pp. 223–249.

42. Sych, O.V., Golubeva, M.V., Khlusova, E.I., Razrabotka khladostoikoi svarivaemoi stali kategorii prochnosti 690 MPa dlyatyazhelonagruzhennoi tekhniki, rabotayushchei v arkticheskikh usloviyakh [Development of cold resistant alloying 690 MPa strength category steel for heavily loaded machines operating in Arctic conditions], Tyazheloe Mashinostroenie, 2018, No 4, pp. 17–25.

43. Gusev, M.A ., Ilyin, A.V., Larionov, A.V., Sertifikatsiya sudostroitelnykh materialov dlya sudov, ekspluatiruyushchikhsya v usloviyakh Arktiki [Certification of shipbuilding materials for ships exploited in Arctic conditions], Sudostroenie, 2014, No 5 (816), pp. 39–43.

44. Sych, O.V., Khlusova, E.I., Pazilova, U.A., Yashina, E.A., Struktura i svoistva zony termicheskogo vliyaniya nizkolegirovannykh khladostoikikh stalei dlya arkticheskogo primeneniya [Structure and properties of zone of thermal influence of low-alloyed cold-resistant steels for arctic application], Voprosy Materialovedeniya, 2018, No 2 (94), pp. 30–51.

45. Sych, O.V., Golubeva, M.V., Khlusova, E.I., Issledovanie struktury i svoistv svarnykh soedinenii iz vysokoprochnoi khladostoikoi stali marki 09KhGN2MD, poluchennykh elektrodugovoi i lazernoi svarkoi [Research of structure and properties of welded connections made of high-strength cold-resistant 09KhGN2MD steel, obtained by electric arc and laser welding], Tyazheloe Mashinostroenie, 2018, No 7-8, pp. 23-32.

46. Sych, O.V., Khlusova, E.I., Golubeva, M.V., Gusev, M.A., Yashina, E.A., Denisov, S.V., Gorshkov, S.N., Stekanov, P.A., Avramenko, V.A., Mychak, M.N., Razrabotka i vnedrenie tekhnologii proizvodstva khladostoikogo metalloprokata dlya ledokolnogo flota, morskoi i inzhenernoi tekhniki, ekspluatiruyushcheisya v Arktike [Development and introduction of production technologies of cold-resistant rolled metal for icebreakers, marine and service equipment for the Arctic], Proceedings of the International Conference and Exhibition on Oil and Gas Development of the Russian Arctic and the Continental Shelf of the CIS Countries (RAO/CIS Offshore), St Petersburg, 2017, pp. 31–33.


Review

For citations:


Sych O.V. Scientific and technological bases for creation of cold-resistant steel with a guaranteed yield strength of 315–750 MPa for the Arctic. Part 2. Technology of production, structure and properties of sheet hire performance. Voprosy Materialovedeniya. 2018;(4(96)):14-41. (In Russ.) https://doi.org/10.22349/1994-6716-2018-96-4-14-41

Views: 885


ISSN 1994-6716 (Print)