Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Influence of unfavorable climatic factors characteristic of the arctic zone on the properties of polymeric materials and composites: a review

https://doi.org/10.22349/1994-6716-2023-116-4-144-168

Abstract

The paper reviews studies of the influence of external influencing factors characteristic of the Arctic zone on the properties of polymer materials and polymer composites. In the cited works, the influence of factors such as low temperatures, thermal cycling, high humidity, and other aggressive environmental conditions on the strength properties of a number of thermosetting and thermoplastic matrices, as well as composites based on them, has been studied. A comparative analysis of resistance of various materials to unfavorable climatic factors typical for the Arctic climate has been carried out. This review can be used when choosing materials for work in the Arctic and subarctic zones, as well as in other regions where the described factors may affect the operation of products, machines and structures.

About the Authors

D. S. Alexandrova
National Research Center «Kurchatov Institute»
Russian Federation

1 Akademika Kurchatova Square, 123182 Moscow



I. V. Zlobina
National Research Center «Kurchatov Institute»; Gagarin Saratov State Technical University
Russian Federation

Cand Sc. (Eng)

1 Akademika Kurchatova Square, 123182 Moscow;

77 Polytekhnicheskaya St, 410054 Saratov

 



A. S. Egorov
National Research Center «Kurchatov Institute»
Russian Federation

Cand Sc. (Chem)

1 Akademika Kurchatova Square, 123182 Moscow



A. V. Anisimov
NRC «Kurchatov Institute» – CRISM «Prometey»
Russian Federation

Dr Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



References

1. Andreeva, N.P., et al., Klimaticheskie ispytaniya po otsenke stoikosti materialov k usloviyam morskogo arkticheskogo i subarkticheskogo klimatov [Climatic tests to assess the resistance of materials to the conditions of the Arctic and subarctic marine climates], Novosti materialovedeniya. Nauka i tekhnika, 2016, No 6, pp. 3–12.

2. Shein, E.A., Doriomedov, M.S., Daskovsky, M.I., Sovremennye materialy dlya raboty v usloviyakh arkticheskogo klimata [Modern materials for work in the Arctic climate], Novosti materialovedeniya. Nauka i tekhnika, 2016, No 1, pp. 49–56.

3. Buznik, V.M., Kablov, E.N., Arctic materials science: current state and prospects, Herald of the Russian Academy of Sciences, 2017, V. 87, pp. 397–408. DOI 10.1134/S101933161705001X.

4. Khlusova, E.I., Sych, O.V., Sozdanie khladostoikikh konstruktsionnykh materialov dlya Arktiki. Istoriya, opyt, sovremennoe sostoyanie [Creation of cold-resistant structural materials for the Arctic. History, experience, current state], Innovatsii, 2018, No 11 (241), pp. 85–92.

5. Sych, O.V., Nauchno-tekhnologicheskie osnovy sozdaniya khladostojkih stalei s garantirovannym predelom tekuchesti 315–750 MPa dlya Arktiki. Ch. 1. Printsipy legirovaniya i trebovaniya k strukture listovogo prokata [Scientific and technological foundations for the creation of cold-resistant steels with a guaranteed yield strength of 315–750 MPa for the Arctic. Part 1. Principles of alloying and requirements for the structure of sheet metal], Voprosy Materialovedeniya, 2018, No 3, pp. 22–47.

6. Sych, O.V., Nauchno-tekhnologicheskie osnovy sozdaniya khladostoikikh stalei s garantirovannym predelom tekuchesti 315–750 MPa dlya Arktiki. Ch. 2. Tekhnologiya proizvodstva, struktura i kharakteristiki rabotosposobnosti listovogo prokata [Scientific and technological foundations for the creation of cold-resistant steels with a guaranteed yield strength of 315–750 MPa for the Arctic. Part 2. Production technology, structure and performance characteristics of sheet metal], Voprosy Materialovedeniya, 2018, No 4, pp. 14–41.

7. Petrova, P.N., et al., Analiz nauchno-tekhnicheskoi i patentnoi literatury v oblasti sozdaniya morozostoikikh polimernykh materialov, Diagnostics, Resource and Mechanics of Materials and Structures, 2017, No 2, pp. 53–65. DOI 10.17804/2410-9908.2017.2.053-065.

8. Wigley, D.A., Mechanical properties of materials at low temperatures, Cryogenics, 1968, V. 8, No 1, pp. 3–12. DOI 10.1016/S0011-2275(68)80042-6.

9. Lord, H.W., Dutta, P.K., On the design of polymeric composite structures for cold regions applications, Journal of reinforced plastics and composites, 1988, V. 7, No 5, pp. 435–458. DOI 10.1177/073168448800700503.

10. Mostovoi, A.S., Nurtazina, A.S., Kadykova, Yu.A., Epoksidnye kompozity s povyshennymi ekspluatatsionnymi kharakteristikami, napolnennye dispersnymi mineralnymi napolnitelyami [Epoxy composites with enhanced performance characteristics filled with dispersed mineral fillers], Vestnik Voronezhskogo gosudarstvennogo universiteta inzhenernykh tekhnologii, 2018, V. 80, No 3 (77), pp. 330–335. DOI 10.20914/2310-1202-2018-3-330-335.

11. Suma Sindhu, P., et al., Morphological changes in epoxy resin (DGEBA/TETA) exposed to low temperatures, Journal of Adhesion Science and Technology, 2020, V. 34, No 20, pp. 2262–2273. DOI 10.1080/01694243.2020.1756157.

12. Torabizadeh, M.A., Tensile, compressive and shear properties of unidirectional glass/epoxy composites subjected to mechanical loading and low temperature services, Indian Journal of Engineering and Materials Sciences, 2013, V. 20, pp. 299–309.

13. Dutta, P.K., Structural fiber composite materials for cold regions, Journal of Cold Regions Engineering, 1988, V. 2, No 3, pp. 124–134.

14. Li, H., et al., Freeze-thaw resistance of unidirectional-fiber-reinforced epoxy composites, Journal of Applied Polymer Science, 2012, V. 123, No 6, pp. 3781–3788. DOI 10.1002/app.34870.

15. Kosenko, E., et al., Development of Construction and Repair Materials Used in Transport and Technological Machines Operating in the Arctic, MATEC Web of Conferences, EDP Sciences, 2021, V. 346, p. 03019. DOI 10.1051/matecconf/202134603019.

16. Hu, Y., et al., Effect of aramid pulp on low temperature flexural properties of carbon fibre reinforced plastics, Composites Science and Technology, 2020, V. 192, Art. 108095. DOI 10.1016/j.compscitech.2020.108095.

17. Shahapurkar, K., et al., Compressive behavior of cenosphere/epoxy syntactic foams in arctic conditions, Composites Part B: Engineering, 2018, V. 135, pp. 253–262. DOI 10.1016/j.compositesb.2017.10.006.

18. Castellanos, A.G., et al., Low-velocity impact response of woven carbon composites in arctic conditions, Journal of Dynamic Behavior of Materials, 2018, V. 4, pp. 308–316. DOI 10.1007/s40870-018-0160-8.

19. Kishi, H., et al., Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites, Composites Science and technology, 2004, V. 64, No 16, pp. 2517–2523. DOI 10.1016/j.compscitech.2004.05.006.

20. Pettarin, V., et al., Analysis of low temperature impact fracture data of thermoplastic polymers making use of an inverse methodology, Engineering fracture mechanics, 2006, V. 73, No 6, pp. 738–749. DOI 10.1016/j.engfracmech.2005.10.005.

21. Plummer, C.J.G., et al., Fracture resistance of mineral reinforced polyamide 6, Polymer, 2004, V. 45, No 4, pp. 1147–1157.

22. Zhang, Z., Hartwig, G., Low-temperature viscoelastic behavior of unidirectional carbon composites, Cryogenics, 1998, V. 38, No 4, pp. 401–405.

23. Garcia-Gonzalez D., et al., Low temperature effect on impact energy absorption capability of PEEK composites, Composite Structures, 2015, V. 134, pp. 440–449. DOI 10.1016/j.compstruct.2015.08.090.

24. Jeng, C.C., Chen, M., Flexural failure mechanisms in injection-moulded carbon fibre/PEEK composites, Composites science and technology, 2000, V. 60, No 9, pp. 1863–1872. DOI 10.1016/S0266-3538(00)00076-2.

25. Karger-Kocsis, J., Friedrich, K., Temperature and strain-rate effects on the fracture toughness of poly (ether ether ketone) and its short glass-fibre reinforced composite, Polymer, 1986, V. 27, No 11, pp. 1753–1760. DOI 10.1016/0032-3861(86)90272-7.

26. Rohart, V., Lebel, L.L., Dubé, M., Influence of freeze/thaw cycling on the mechanical performance of resistance-welded carbon fibre/polyphenylene sulphide composite joints, Journal of Reinforced Plastics and Composites, 2020, V. 39, No 21–22, pp. 837–851. DOI 10.1177/0731684420933681.

27. Messana, A., et al., Correlation between thermo-mechanical properties and chemical composition of aged thermoplastic and thermosetting fiber reinforced plastic materials: Korrelation zwischen thermomechanischen Eigenschaften und chemischer Zusammensetzung von gealterten thermo-und duroplastischen faserverstärkten Kunststoffen, Materialwissenschaft und Werkstofftechnik, 2017, V. 48, No 5, pp. 447–455. DOI 10.1002/mawe.201700024.

28. IEC 60068–2-38 Edition 2009–01: Environmental testing, pp. 2–38, Tests – Test Z/AD, IEC International Standard.

29. Costa, A.P., Botelho, E.C., Pardini, L.C., Influence of environmental conditioning on the shear behavior of poly (phenylene sulfide)/glass fiber composites, Journal of Applied Polymer Science, 2010, V. 118, No 1, pp. 180–187. DOI 10.1002/app.32295.

30. Arici, A.A., Effect of hygrothermal aging on polyetherimide composites, Journal of reinforced plastics and composites, 2007, V. 26, No 18, pp. 1937–1942. DOI 10.1177/0731684407082630.

31. Baschek, G., Hartwig, G., Zahradnik, F., Effect of water absorption in polymers at low and high temperatures, Polymer, 1999, V. 40, No 12, pp. 3433–3441. DOI 10.1016/S0032-3861(98)00560-6.


Review

For citations:


Alexandrova D.S., Zlobina I.V., Egorov A.S., Anisimov A.V. Influence of unfavorable climatic factors characteristic of the arctic zone on the properties of polymeric materials and composites: a review. Voprosy Materialovedeniya. 2023;(4(116)):144-168. (In Russ.) https://doi.org/10.22349/1994-6716-2023-116-4-144-168

Views: 330


ISSN 1994-6716 (Print)