Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Influence of the Y3Al5O12 on the structure formation and properties of ceramics of the Al2O3 – Y2O3 system

https://doi.org/10.22349/1994-6716-2024-118-2-33-45

Abstract

The paper presents results of the study of the structure and physico-mechanical properties of ceramics composits α-Al2O3 + n Y2O3 (n = 0; 0.5; 1; 1.5; 2; 3; 4; 5 wt.%) based on the basis of polymorphic modifications γ+θ-Al2O3 depending on the concentration of the Y2O3 doping impurity and the annealing temperature of the powder mixtures (800 and 900°C). The effect of mutual protection against crystallization was discovered, which results in mutual inhibition of crystallization processes in Al2O3–Y2O3 powder systems. By X-ray diffraction analysis, the formation of a phase of yttrium-aluminum garnet Y3Al5O12 (YAG) in ceramics has been established. The dependence of the mechanical characteristics of the materials under study on the amount and size of the formed phase YAG has been revealed.

About the Authors

A. V. Maletsky
A.A. Galkin Donetsk Institute for Physics and Engineering; Joint Institute for Nuclear Research
Russian Federation

72 Rosa Luxemburg St, Donetsk; 6 St Joliot Curie, 141980 Dubna, Moscow Region



G. K. Volkova
A.A. Galkin Donetsk Institute for Physics and Engineering
Russian Federation

72 Rosa Luxemburg St, Donetsk



T. E. Konstantinova
A.A. Galkin Donetsk Institute for Physics and Engineering
Russian Federation

Dr Sc. (Phys-Math).

72 Rosa Luxemburg St, Donetsk



D. R. Belichko
A.A. Galkin Donetsk Institute for Physics and Engineering
Russian Federation

72 Rosa Luxemburg St, Donetsk



I. K. Nosolev
A.A. Galkin Donetsk Institute for Physics and Engineering
Russian Federation

72 Rosa Luxemburg St, Donetsk



A. S. Doroshkevich
Joint Institute for Nuclear Research; Dubna State University
Russian Federation

6 St Joliot Curie, 141980 Dubna, Moscow Region; 19 University St, 141982, Dubna, Moscow Region



Zh. V. Mezentseva
Joint Institute for Nuclear Research
Russian Federation

6 St Joliot Curie, 141980 Dubna, Moscow Region



B. L. Oksengendler
Physics and Technology Institute NPO Physics-Sun
Uzbekistan

St Chingiz Aitmatov 2B, 100084 Tashkent



V. Teofilović
University of Novi Sad, Faculty of Technology
Serbia

21000 Novi Sad



T. Ersceg
University of Novi Sad, Faculty of Technology
Serbia

21000 Novi Sad



I. Ristić
University of Novi Sad, Faculty of Technology
Serbia

21000 Novi Sad



References

1. Bordina, G.E., Lopina, N.P., Nekrasova, E.G., Bigina, Yu.V., Suhareva, D.D. , Materialy budushchego [Materials of the future], 2018, No 2 (68), pp. 11–12.

2. Kant, T., Shrivas, K., Dewangan, K., Kumar, A., Jaiswal, N.K., Deb, M.K., Pervez, S., Design and development of conductive nanomaterials for electrochemical sensors: a modern approach, Materials Today Chemistry, 2022, V. 24. DOI.org/10.1016/j.mtchem.2021.100769.

3. Zhu, C.Zh., Yang, G.Н., Li, H., Du, D., Lin, Y. , Electrochemical Sensors and Biosensors Based on Nanomaterials and Nanostructures, Analytical Chemistry, 2015, No 87 (1), pp. 230–249. DOI: 10.1021/ac5039863.

4. Luo, X., Morrin, A., Killard, A.J., Smyth, M.R., Application of Nanoparticles in Electro-chemical Sensors and Biosensors, 2006, No 18 (4), pp. 319–326. DOI:10.1002/elan.200503415.

5. Shrivas, K., Ghosale, A., Bajpai, P.K., Kant, T., Dewangan, Kh., Shankar, R., Advances in flexible electronics and electrochemical sensors using conducting nanomaterials: A review, Micro-chemical Journal, 2020, V. 156. DOI.org/10.1016/j.microc.2020.104944.

6. Baig, N., Kammakakam, I., Falath, W. , Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Materials Advances, 2021, No 2. DOI: 10.1039/d0ma00807a.

7. Wahsh, M.M.S., Khattab, R.M., Awaad, M., Thermo-mechanical properties of mullite/zirconia reinforced alumina ceramic composites, Materials & Design, 2012, V. 41, pp. 31–36. DOI.org/10.1016/j.matdes.2012.04.040.

8. García Ferré, F., Mairov, A., Ceseracciu, L., Serruys, Y., Trocellier, P., Baumier, C., Kaïtasov, O., Brescia, R., Gastaldi, D., Vena, P., Beghi, M.G., Beck, L., Sridharan, K., Di Fonzo, F., Radiation endurance in Al2O3 nanoceramics, Scientific Reports 6. DOI:10.1038/srep33478.

9. Maletskyi, A.V., Belichko, D.R., Konstantinova, T.E., Volkova, G.K., Doroshkevich, A.S., Lyubchyk, A.I., Burkhovetskiy, V.V., Aleksandrov, V.A., Mardare, D., Mita, C., Chicea, D., Khiem, L.H. , Structure formation and properties of corundum ceramics based on metastable aluminium oxide doped with stabilized zirconium dioxide, Ceramics International, 2021, V. 47, Is. 14, pp. 19489–19495. doi:10.1016/j.ceramint.2021.03.286.

10. Maletskyi, A.V., Konstantinova, T.E., Volkova, G.K., Belichko, D.R., Doroshkevich, A.S., Popov, E., Cornei, N., Jasinska, B., Mezentseva, Zh.V. , Tatarinova , A.A., Mirzayev, M.N., Khiem, L.H., Ristić, I., Teofilović, V., Balvanović, R., High hydrostatic pressure influence on the properties and tendency to agglomeration of ZrO2 grains of the Al2O3–YSZ composite ceramics system, Ceramics International, 2023, V 49, Is. 10, pp. 16044–16052. doi.org/10.1016/j.ceramint.2023.01.202.

11. Green, D.J., Transformation toughening and grain size control in β″-Al2O3/ZrO2 composites, J. Mater Sci., 1985, No 20, pp. 2639–2646. DOI.org/10.1007/BF00556096.

12. Azar, M., Palmero, P., Lombardi, M., Garnier, V., Montanaro, L., Fantozzi, G. , Chevalier, J. , Effect of initial particle packing on the sintering of nanostructured transition alumina, Journal of the European Ceramic Society, 2008, V. 28, Is. 6, pp. 1121–1128. DOI.org/10.1016/j.jeurceramsoc.2007.10.003.

13. Vovk, O., Siryk, Y., Nizhankovskyi, S., Fedorov, A., Mateichenko, P., Morphology and microstructure of crystalline YAG-Al2O3 composites grown by the horizontal directional crystallization, Journal of Alloys and Compounds, 2023, V. 934. DOI.org/10.1016/j.jallcom.2022.168004.

14. Li, L., Xie, F., Wu, X., He, J., Li, Sh., Microstructure and phase formation of atmospheric plasma sprayed YAG coatings, Surface and Coatings Technology, 2023, V. 466. DOI.org/10.1016/j.surfcoat.2023.129614.

15. Glushkova, V.B., Krzhizhanovskaya, V.A., Egorova, O.N., Udalov, Yu.P., Kachalova, V.P. , Vzaimodejstvie oksidov ittriya i alyuminiya [Interaction of yttrium and aluminum oxides], Izv. AN SSSR. Neorganicheskie materialy, 1983, V. 19, No 1, pp. 95–99.

16. Lukin, E.S. , Sovremennaya vysokoplotnaya oksidnaya keramika s reguliruemoj strukturoj [Modern high-density oxide ceramics with adjustable structure], Ogneupory i tekhnicheskaya keramika, 1997, No 9, pp. 13‒18.

17. Danilenko, I., Prokhorenko, S., Konstantinova, T., Ahkozov, L., Burkhovetski, V., Glazunova, V. , Effect of small amount of alumina on structure, wear and mechanical properties of 3Y–TZP ceramics, World Journal of Engineering, 2014, V. 11, pp. 9–16.

18. Strekalovsk y, V.N., Polezhaev, Yu.M., Palguev, S.F. , Oksidy s primesnoi razuporyadochennostyu: sostav, struktura, fazovye prevrashcheniya [Oxides with impurity disorder: composition, structure, phase transformations], A. D. Neuymin (Ed.), Moscow: Nauka, 1987.

19. Prilutskaya, E.V., Protasov, A.S., Senina, M.O., Lemeshev, D.O., Fazovye perekhody v sisteme ittrij-alyuminievy granat – oksid skandiya i perspektivy polucheniya vysokoplotnoi keramiki [Phase transitions in the yttrium-aluminum garnet–scandium oxide system and prospects for obtaining high-density ceramics], Uspekhi v khimii i khimicheskoi tekhnologii, 2022, V. 36, No 3 (252), pp. 127–129.

20. Bondar, I.A., Koroleva, L.N., Bezruk, E.T., Physicochemical properties of yttrium aluminates and gallates, Izv. Akad. Nauk SSSR, Neorg. Mater., 1984, V. 20, No 2, pp. 257–261.

21. Ermolenko, N.F., Efros, M.D., Ermolenko, E.N ., Vliyanie soosazhdeniya gelei na strukturu i sorbtsionnye svoistva poluchaemykh iz nikh oksidnykh katalizatorov [The effect of co-deposition of gels on the structure and sorption properties of the oxide catalysts obtained from them], Izv. AN BSSR. Ser. tekhnicheskikh nauk, 1968, No 1, pp. 1678–1687.

22. Anderson, Dzh. , Struktura metallicheskikh katalizatorov [Structure of metal catalysts], Moscow: Mir, 1973.


Review

For citations:


Maletsky A.V., Volkova G.K., Konstantinova T.E., Belichko D.R., Nosolev I.K., Doroshkevich A.S., Mezentseva Zh.V., Oksengendler B.L., Teofilović V., Ersceg T., Ristić I. Influence of the Y3Al5O12 on the structure formation and properties of ceramics of the Al2O3 – Y2O3 system. Voprosy Materialovedeniya. 2024;(2(118)):33-45. (In Russ.) https://doi.org/10.22349/1994-6716-2024-118-2-33-45

Views: 115


ISSN 1994-6716 (Print)