Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Influence of heat treatment on phase and structure formation and magnetic properties of soft magnetic alloy 80NKhS manufactured by additive technology

https://doi.org/10.22349/1994-6716-2024-118-2-62-72

Abstract

The evolution of the structure and phase composition of the soft magnetic alloy 80NKhS, produced by selective laser melting and annealed at different temperatures, was studied by light and electron microscopy, X-ray spectral and X-ray structural analyses. It has been established that a weakening of structural anisotropy and an increase in the average grain size occurs only at temperatures of 1250°C, associated with the oxides of Al, Ti, Si, Mn, Cr and nickel silicide previously formed during additive alloying. These phases have high thermal stability and inhibit grain growth, limiting the magnetic permeability of the alloy. To achieve the required level of magnetic properties, the soft magnetic alloy 80NKhS, manufactured by the additive method, must be annealed at higher temperatures than specified in GOST 10160–75.

About the Authors

T. V. Knyazyuk
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng).

49 Shpalernaya St, 191015 St Petersburg



L. V. Mukhamedzyanova
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



N. V. Yakovleva
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



S. A. Manninen
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



A. S. Zhukov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



V. V. Bobyr
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



P. A. Kuznetsov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



References

1. Kasatkin, G.S., Fedotov, V.V., Issledovanie svoistv magnitnykh materialov [Investigation of the properties of magnetic materials], Moscow: MMIT, 2008.

2. GOST 10160–75 : Splavi pretsizionnie magnitno-myagkie. Tekhnicheskie usloviya [Precision magnetically soft alloys. Technical conditions], Moscow: Izd-vo standartov, 1975.

3. Preobrazhensky, A.A., Bishard, Ye.G., Magnitnie materiali i elementi [Magnetic materials and elements]: study guide, Moscow: Vysshaya shkola, 1986.

4. Périgo, E.A., Jacimovic, J., García Ferré, F., Scherf, L.M., Additive Manufacturing of Magnetic Materials, Additive Manufacturing, 2019, V. 30, p. 100870. URL: https://doi.org/10.1016/j.addma.2019.100870.

5. Goll, D., et al., Additive manufacturing of soft magnetic materials and components, Additive Manufacturing, 2019, V. 27, pp. 428–429. URL: https://doi.org/10.1016/j.addma.2019.02.021.

6. Mikler C., et al., Laser Additive Manufacturing of Magnetic Materials. JOM: the journal of the Minerals, Metals & Materials Society, 2017, V. 3, pp. 532–543. URL: https://doi.org/10.1007/s11837-017-2257-2.

7. Mikler, C., et al., Tuning the phase stability and magnetic properties of laser additively processed Fe–30%Ni soft magnetic alloys, Materials Letters, 2017, V. 199, pp. 88–92. URL: https://doi.org/10.1016/j.matlet.2017.04.054.

8. Garibaldi, M., et al., Relationship between laser energy input, microstructures and magnetic properties of selective laser melted Fe–6.9%wt Si soft magnets, Materials Characterization, 2018, V. 143, pp. 144–151. URL: https://doi.org/10.1016/j.matchar.2018.01.016.

9. Shishkovsky, I.V., Peculiarities of selective laser melting process for permalloy powder, Materials Letters, 2006, V. 171, pp. 208–211. URL: https://doi.org/10.1016/j.matlet.2016.02.099.

10. Zhang, B., Fenineche, N.E., Liao, H., Coddet, C., Magnetic properties of in-situ synthesized FeNi3 by selective laser melting Fe–80%Ni powders, Journal of Magnetism and Magnetic Materials, 2013, V. 336, pp. 49–54. URL: https://doi.org/10.1016/j.jmmm.2013.02.014.

11. Zhang, B., Fenineche, N.E., Liao, H., Coddet, C., Microstructure and Magnetic Properties of Fe– Ni Alloy Fabricated by Selective Laser Melting Fe/Ni Mixed Powders, JMST, 2013, V. 29, Is. 8, pp. 757–760. URL: https://doi.org/10.1016/j.jmst.2013.05.001.

12. Mazeeva, A.K., et al. , Magnetic properties of Fe–Ni permalloy produced by selective laser, Journal of Alloys and Compounds, 2020, V. 814, p. 152315. URL: https://doi.org/10.1016/j.jallcom.2019.152315.

13. Staritsyn, M.V., Kuznetsov, P.A., Petrov, S.N., et al., Composite Structure as a Strengthening Factor of Stainless Austenitic Chromium–Nickel Additive Steel, Phys. Metals Metallogr., 2020, No 121, pp. 337–343. URL: https://doi.org/10.1134/S0031918X20040146.

14. Saedi, K., Lofaj, F., Kevetkova, L., Shen, Z. , Austenitic stainless steel strengthened by the in-situ formation of oxide nano inclusions, RSC Adv., 2015, No 5, pp. 20747–20750.

15. Flemings, M.K. , Protsessi zatverdevaniya [Solidification processes], Zhukov, A.A ., Rabinovich, B.V . (Eds.), Moscow: Mir, 1977.

16. Sames, W.J., List, F.A., Pannala, S., Dehoff, R.R., Babu, S.S., The metallurgy and processing science of metal additive manufacturing, Int Mater Rev., 2016, No 61, pp. 315–360. URL: https://doi.org/10.1080/09506608.2015.1116649.

17. Song, В., Dong, S., Liu, Q., Liao, H., Coddet, C., Vacuum heat treatment of iron parts produced by selective laser melting: Microstructure, residual stress and tensile behavior, Mater Des., 2014, No 54, pp. 727–733. URL: https://doi.org/10.1016/j.matdes.2013.08.085.

18. Kanagarajah, P., Brenne, F., Niendorf, T., Maier, H.J., Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading, Mater. Sci. Eng. A., 2013, No 588, pp. 188–195. URL: https://doi.org/10.1016/j.msea.2013.09.025.

19. Hengsbach, F., Koppa, P., Duschik, K., Holzweissig, M.J., Burns, M., Nellesen, J., Tillmann, W., Tröster, T., Hoyer, K.-P., Schaper, M. , Duplex stainless steel fabricated by selective laser melting. Microstructural and mechanical properties, Mater Des., 2017, No 133, pp. 136–142. URL: https://doi.org/10.1016/j.matdes.2017.07.046.

20. Suzuki, H. , Weldability of Modern Structural Steels in Japan, Transactions of the Iron and Steel Institute of Japan, 1983, No 23, pp. 189–204. URL: https://doi.org/10.2355/isijinternational1966.23.189.

21. Liu, F., Lin, X., Yang, G., Song, M., Chen, J., Huang, W. , Microstructure and residual stress of laser rapid formed Inconel 718 nickel-base superalloy, Opt Laser Technol., 2011, No 43, pp. 208–213. URL: https://doi.org/10.1016/j.optlastec.2010.06.015.

22. Bertsch, K.M., De Bellefon, G.M., Kuehl, B., Thoma, D.J., Origin of dislocation structures in an additively manufactured austenitic stainless steel 316L, Acta Materialia, 2020, No 199, pp. 19– 33. URL: https://doi.org/10.1016/j.actamat.2020.07.063.

23. Deng, P., Yin, H., Song, M., Li, D., Zheng,Yu., Prorok, B.C., Lou, X., On the Thermal Stability of Dislocation Cellular Structures in Additively Manufactured Austenitic Stainless Steels, Roles of Heavy Element Segregation and Stacking Fault Energy. Jom., 2020, No 72, pp. 4232–4243. URL: https://doi.org/10.1007/s11837-020-04427-7.

24. Zhukov, A.S., Manninen, S.A., Tit, M.A., Knyazyuk, T.V., Kuznetsov, P.A ., Issledovanie struktury i magnitnikh svoistv additivnogo magnitomyagkogo splava 80NKhS [Investigation of the structure and magnetic properties of an additive soft magnetic alloy 80NKhS], Fizika metallov i metallovedenie, 2023, No 4, pp. 353–359.


Review

For citations:


Knyazyuk T.V., Mukhamedzyanova L.V., Yakovleva N.V., Manninen S.A., Zhukov A.S., Bobyr V.V., Kuznetsov P.A. Influence of heat treatment on phase and structure formation and magnetic properties of soft magnetic alloy 80NKhS manufactured by additive technology. Voprosy Materialovedeniya. 2024;(2(118)):62-72. (In Russ.) https://doi.org/10.22349/1994-6716-2024-118-2-62-72

Views: 48


ISSN 1994-6716 (Print)