

On the physical-mechanical and tribotechnical properties of antifriction carbon fiber based on a modified thermosetting matrix
https://doi.org/10.22349/1994-6716-2024-118-2-91-103
Abstract
The physical-mechanical and tribological properties of anti-friction carbon fiber plastic UGET based on low-modulus carbon fabric “Ural T-15R” have been studied in order to increase the magnitude of the ultimate deformation and reduce the elastic modulus through the use of a modified thermosetting matrix ET-4 instead of the traditionally used ET-2.
Modes of polymerization and of heat treatment of epoxy binders were selected considering the results of the experiments. Prototypes of prepregs were obtained by solution impregnation on the UPST-1000M line and then processed into PCM by hot pressing. Laboratory samples were made and physical and mechanical tests were carried out to determine the ultimate strength under compression, shear and bending stress under destruction, as well as Charpy impact strength. Steel 20Kh13 and oxidized titanium alloy PT-3V were used as counter body rollers to determine carbon fiber tribosets.
It was shown that carbon fiber samples based on chemically modified binder ET-4 with two-stage polymerization and heat treatment mode in the range of 90°C to 180°C both have better physical-mechanical and tribotechnical properties, in contrast with the analogue with a three-stage mode and carbon fiber carbon heat at friction over 20Kh13 steel and oxidized titanium alloy PT-3V.
About the Authors
D. D. DvoryantsevRussian Federation
49 Shpalernaya St, 191015 St Petersburg
I. V. Lishevich
Russian Federation
Cand Sc. (Eng).
49 Shpalernaya St, 191015 St Petersburg
A. S. Sargsyan
Russian Federation
Cand Sc. (Eng).
49 Shpalernaya St, 191015 St Petersburg
A. S. Savelov
Russian Federation
Cand Sc. (Eng).
49 Shpalernaya St, 191015 St Petersburg
E. A. Sharko
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
References
1. Bakhareva, V.E ., Sovremennye mashinostroitelnye materialy. Nemetallicheskie materialy [Modern engineering materials. Non-metallic materials]: reference book, I.V. Gorynin (Ed.), St Petersburg: Professional, 2014, pp. 79–133.
2. Dvoryantsev, D.D., Lishevich, I.V., Sargsyan, A.S., Morozov, D.L., Sharko, E.A . , Issledovanie fiziko-mekhanicheskikh i tribotekhnicheskikh svoistv antifriktsionnogo ugleplastika na osnove modifitsirovannoi termoreaktivnoi matritsy [Investigation of the physico-mechanical and tribotechnical properties of antifriction carbon fiber based on a modified thermosetting matrix], Tezisy k dokladu 20-i konferentsii molodykh uchenykh i spetsialistov “Novye materialy i tekhnologii” (KMUS-2023), NRC “Kurchatovsky institute” – CRISM “Prometey”, 2023
3. Nikolaev, G.I., Bakhareva, V.E., Vlasov, V.A., Lobyntseva, I.V., Anisimov, A.V., Petrova, L.V., Zimina, V.N. , Primenenie antifriktsionnykh ugleplastikov v podshipnikakh skolzheniya [The use of antifriction carbon fiber plastics in sliding bearings], Voprosy Materialovedeniya, 2006, No 2 (46), pp. 7–21.
4. Bakhareva, V.E., Nikolaev, G.I., Anisimov, A.V. , Uluchshenie funktsionalnykh svoistv antifriktsionnykh polimernykh kompozitov dlya uzlov treniya skolzheniya [Improving the functional properties of antifriction polymer composites for sliding friction units], Rossiisky khimichesky zhurnal, 2009, V. 53, No 4, pp. 4–18.
5. Mustafa, L.M., Ismailov, M.B., Ermakhanova, A.M., Sanin, A .F ., Issledovanie vliyaniya plastifikatorov i termoplastov na mekhanicheskie svoistva epoksidnoi smoly i ugleplastika [Investigation of the effect of plasticizers and thermoplastics on the mechanical properties of epoxy resin and carbon fiber]: review, Kompleksnoe ispolzovanie mineralnogo syrya, 2019, No 4 (311), pp. 48–56. URL: https://doi.org/10.31643/2019/6445.37.
6. Kuznetsov, A.V., Petrov, V.V., Metod khimicheskoi modifikatsii epoksidnykh kompozitsy [Method of chemical modification of epoxy compositions], Inzhenerny vestnik Dona, 2019, No 6, pp. 1–9.
7. Kuperman, A.M., Zelensky, E.S., Kerber, M.L . , Stekloplastiki na osnove matrits, sovmeshchayushchikh termo- i reaktoplasty [Fiberglass based on matrices combining thermo- and reactoplastics], Mekhanika kompozitnykh materialov, 1996, V. 32, No 1, pp. 111–117.
8. Patent RF 2153107 C1: Antifriktsionnaya kompozitsiya [Antifriction composition], Priority date 15.07.1999, Publ. 20.07.2000.
9. Antifriktsionnye uglerodnye materialy [Antifriction carbon materials], Kleimenov, S.M . (Ed.), Мoscow, 1973.
10. Chursova, L.V., Panina, N.N., Grebeneva, T.A., Kutergina, I.Yu ., Epoksidnye smoly, otverditeli, modifikatory i svyazuyushchie na ikh osnove [Epoxy resins, hardeners, modifiers and binders based on them], St Petersburg: Professiya, 2020.
11. Perepelkin, K.E. , Armiruyushchie volokna i voloknistye polimernye kompozity[Reinforcing fibers and fibrous polymer composites], St Petersburg: Nauchnye osnovy tekhnologii, 2009.
12. Ginzburg, B.M., Tochilnikov, D.G., Bakhareva, V.E., Anisimov, A.V., Kireenko, O.F ., Polimernye materialy dlya podshipnikov skolzheniya, smazyvaemykh vodoi [Polymer materials for water lubricated plain bearings]: review, Zhurnal prikladnoi khimii, 2006, V. 79, No 5, pp. 705–716.
13. Tochilnikov, D.G., Ginzburg, B.M. , Tekhnologiya tribotekhnicheskikh ekspress-ispytany antifriktsionnykh polimerov [Tribotechnical rapid testing technology for antifriction polymers], Voprosy Materialovedeniya, 2002, No 3 (31), pp. 39–48.
14. Plasticizers: Khimicheskaya entsiklopediya. URL: http://www.xumuk.ru/encyklopedia/2/3395. html (reference date 25.08.2019).
15. Mostovoi, A.S. , Retsepturnaya modifikatsiya epoksidnykh smol s primeneniem novykh vysokoeffektivnykh plastifikatorov [Prescription modification of epoxy resins using new highly effective plasticizers], Sovremennye naukoemkie tekhnologii, 2015, No 7, pp. 66–70.
16. Marakhovsky, K.M., Osipchik, V.S. , Modifikatsiya epoksidnogo svyazuyushchego s povyshennymi kharakteristikami dlya polucheniya kompozitsionnykh materialov [Modification of an epoxy binder with enhanced characteristics for the production of composite materials], Uspekhi v khimii i khimicheskoi tekhnologii, 2016, V. 30, No 10, pp. 56–58.
17. Zagora, A.G., Tkachuk, A.I., Terekhov, I.V., Mukhametov, R.R ., Metody khimicheskoi modifikatsii epoksidnykh oligomerov [Methods of chemical modification of epoxy oligomers]: review, Trudy VIAM, 2021, No 7(101). DOI: 10.18577/2307-6046-2021-0-7-73-85.
18. Bartenev, G.M., Lavrentiev, V.V. , Trenie i iznos polimerov [Friction and wear of polymers], Leningrad: Khimiya, 1972.
Review
For citations:
Dvoryantsev D.D., Lishevich I.V., Sargsyan A.S., Savelov A.S., Sharko E.A. On the physical-mechanical and tribotechnical properties of antifriction carbon fiber based on a modified thermosetting matrix. Voprosy Materialovedeniya. 2024;(2(118)):91-103. (In Russ.) https://doi.org/10.22349/1994-6716-2024-118-2-91-103