

Structure and properties of the welded joint during arc welding of low-carbon steel under a layer of flux obtained from metallurgical slag of electric steelmaking
https://doi.org/10.22349/1994-6716-2024-118-2-104-121
Abstract
The results of the study of the influence of the thermophysical properties of the welding flux obtained by processing man-made waste of electric steelmaking (metallurgical slag) on the structure and properties of welded butt joints of thin-sheet low-carbon steel, with automatic arc welding on ceramic linings, are presented. Welding modes have been established using the developed flux, contributing to the achievement of seam sizes according to GOST8713–79, C4 joints, compliance with the mechanical properties of joints close to the base metal and ensuring a minimum level of welding deformations and stresses.
About the Authors
E. A. StartsevRussian Federation
Komsomolsk-on-Amur, 27 Lenin Street, 681013
V. V. Grigoriev
Russian Federation
Cand Sc. (Eng).
Komsomolsk-on-Amur, 27 Lenin Street, 681013
P. V. Bakhmatov
Russian Federation
Cand Sc. (Eng).
Komsomolsk-on-Amur, 27 Lenin Street, 681013
References
1. Verkhoturov, A.D., Babenko, E.G., Makienko, V.M ., Metodologiya sozdaniya svarochnykh materialov [Methodology of welding materials creation], B.A. Voronov (Ed.), Khabarovsk: DVGUPS, 2009.
2. Sviridova, T.V. , et al., Evaluation of the influence of slag heaps on the state of the urban residential area, IOP Conference Series: Materials Science and Engineering, IOP Publishing, 2019, V. 537, No 6. DOI: 10.1088/1757-899X/537/6/062009.
3. Khamatova, A.R., Khokhryakov, O.V ., Elektrostaleplavilny shlak OAO “Izhstal” dlya tsementov nizkoi vodopotrebnosti i betonov na ikh osnove [Izhstal electric steelmaking slag for cements of low water demand and concretes based on them], Izvestiya Kazanskogo arkhitekturno-stroitelnogo universiteta, 2016, No 2, pp. 221–227.
4. Tsakiridis, P.E., Papadimitriou, G.D., Tsivilis, S., Koroneos, C. , Utilization of steel slag for Portlandcement clinker production, Journal of Hazardous Materials, 2008, V. 152, Is. 2, pp. 805– 811. https://doi.org/10.1016/j.jhazmat.2007.07.093.
5. Baryshnikov, V.G., Gorelov, A.M., Papkov, G.I. , Vtorichnye materialnye resursy chernoi metallurgii [Secondary material resources of ferrous metallurgy]: Directory, Moscow: Ekonomika, 1986, V. 2.
6. Garabrina, L.A., Kurgan, T.A., Ignatieva, N.S ., Pererabotka staleplavilnykh shlakov v OAO “MMK” [Processing of steelmaking slags at MMK OJSC], Moscow: Metallurg, 2000.
7. Golov, S.V ., Sitnikov, S. M., Kalimulinov, E. G., Pererabotka i ispolzovanie tekhnogennykh otkhodov v OAO “NTMK” [Processing and use of man-made waste in JSC NTMK], Stal, 2002, No 5.
8. Danilov, E.V. , Sovremennaya tekhnologiya utilizatsii staleplavilnykh shlakov [Modern technology for recycling steelmaking slags], Metallurg, 2003, No 6, pp. 38–39.
9. Fleishanderl, A., Pesl, Dzh., Soert, F ., Obrashchenie otkhodov v pribyl [Turning waste into profit], Novosti chernoi metallurgii za rubezhom, 2002, No 2, pp. 3–6.
10. Igoshev, M.V., Shakurov, E.I. , Pererabotka staleplavilnykh shlakov na kombinate “Severstal” [Processing of steelmaking slags at the Severstal Plant], Moscow: Metallurg, 2003.
11. Song, Q., Shen, B., Zhou, Z., Effect of blast furnace slag and steel slag on cement strength, pore structure and autoclave expansion, Advanced Materials Research, 2011, V. 168–170, pp. 17–20. URL: http://doi.org/10.4028/www.scientific.net/AMR.168-170.17.
12. Skaf, M., Manso, M.J., Aragon, A., Fuente-Alonso, J.A., Ortega López, V. , EAF slag in asphalt mixes: A brief review of its possible re-use, Resources, Conservation and Recycling, 2017, V. 120, pp. 176–185. http://doi.org/10.1016/j.resconrec.2016.12.009.
13. Entsiklopediya tekhnologii. Evoliutsiya i sravnitelny analiz resursnoi effektivnosti promyshlennykh tekhnologii. Ch. 3: Razvitie tekhnologii pererabotki vtorichnykh resursov [Encyclopedia of technologies. Evolution and comparative analysis of the resource efficiency of industrial technologies. Part 3: Development of technologies for processing secondary resources], D.O. Skobelev (Ed.), Moscow; St Petersburg: Renome, 2019. ISBN 978-5-00125-250-4.
14. Filipp, Yu.A ., Sovremennoe sostoyanie i razvitie okhrany okruzhayushchei sredy chernoi metallurgii [The current state and development of environmental protection of ferrous metallurgy], Chernye metally, 2000, No 4, pp. 26–35.
15. Shults , L.A. , Energoekologicheskie problemy sovremennogo metallurgicheskogo kombinata [Energy-ecological problems of a modern metallurgical plant], Izv. vuzov. Cher. Metallurgiya, 2002, No 11, pp. 65– 70.
16. Granovskaya, N.V., Nastavkin, A.V., Meshchaninov, F.V. , Tekhnogennye mestorozhdeniya poleznykh iskopaemykh [Man-made mineral deposits], Rostov-na-Donu: YuFU, 2013.
17. Patent RF № 2793303 C1: Sposob izgotovleniya svarochnogo flyusa iz tekhnogennykh otkhodov staleplavilnogo proizvodstva [A method for manufacturing welding flux from man-made waste from steelmaking], Ba k hmatov, P.V., Star t s ev, E.A., Gladovsk y, R.E., Sobolev, B.M ., appl. 07.11.2022, publ. 31.03.2023.
18. Yusfin, Yu.S., Leontiev, L.I., Chernousov, P.I. , Promyshlennost i okruzhayushchaya sreda [Industry and the environment], Moscow: Akademkniga, 2002.
19. Zaitsev, A.K., Pokhvisnev, Yu.V ., Ekologiya i resursosberezhenie v chernoi metallurgii [Ecology and resource conservation in ferrous metallurgy], Sorosovsky obrazovatelny zhurnal, 2001, V. 7, No 3, pp. 52–58.
20. Potapov, N.N., Konishchev, B.P., Kurlanov S.A. , et al., Zashchitnye gazy i svarochnye flyusy [Protective gases and welding fluxes]: reference book, Potapov, N.N. (Ed.), Moscow: Mashinostroenie, 1989.
21. Сlassification and symbolization of bare steel wire electrodes and fluxes for submerged arc welding of structural steel, Welding World, 1978, No 3–4, pp. 70–71.
22. Bakhmatov, P.V., Startsev, E.A. , Vliyanie rezhimov dugovoi svarki pod sloem eksperimentalnogo flyusa na raspredelenie vnutrennikh napryazheny v svarnykh obraztsakh, vyyavlennykh metodom magnitnoi pamyati metallov [The effect of arc welding modes under a layer of experimental flux on the distribution of internal stresses in welded samples revealed by the method of magnetic memory of metals], Uchenye zapiski Komsomolskogo-na-Amure gosudarstvennogo tekhnicheskogo universiteta, 2023, No 5(69), pp. 83–96. DOI 10.17084/20764359-2023-69-83.
23. Vasyutinsk y, N.A ., Metallurgicheskie shlaki [Metallurgical slags], Kiev: Tekhnika, 1990.
24. Haunstetter, J., Krüger, M., Zunft, M. , Experimental Studies on Thermal Performance and Thermo-Structural Stability of Steelmaking Slag as Inventory Material for Thermal Energy Storage, Applied Sciences, 2020, No 10, p. 931. DOI 10.931.10.3390/app10030931.
Review
For citations:
Startsev E.A., Grigoriev V.V., Bakhmatov P.V. Structure and properties of the welded joint during arc welding of low-carbon steel under a layer of flux obtained from metallurgical slag of electric steelmaking. Voprosy Materialovedeniya. 2024;(2(118)):104-121. (In Russ.) https://doi.org/10.22349/1994-6716-2024-118-2-104-121