

Simulation of stainless ferritic-martensitic and austenitic steel hardening after irradiation in ion accelerator. Part 1. Development of a methodology for determining the ion mode irradiation of ferritic-martensitic steels
https://doi.org/10.22349/1994-6716-2024-118-2-187-211
Abstract
A methodology for determining the irradiation mode for ferritic-martensitic steels at ion accelerator has been developed and experimentally substantiated, providing radiation hardening of these steels, identical to that realized under neutron irradiation. The change in Vickers microhardness is used as a measure of radiation hardening. A study was carried out of radiation-induced changes in the microhardness of ferritic-martensitic steels 07Kh12NMFB and EP-823 after neutron and ion irradiation to damaging doses of 10–30 dpa in the temperature range 350–600°C. These materials were irradiated with neutrons in the reactors BOR-60, BN-600 and in the ion accelerator of the State Scientific Center of the Russian Federation – Institute for Physics and Power Engineering named after A.I. Leypunsky (IPPE) with Fe3+, Fe4+ ions and He+ ions to concentrations of 0.2 and 4 appm/dpa. A transition function has been established that connects the irradiation temperatures for neutron and ion irradiation at a given damaging dose, ensuring the same radiation hardening.
Keywords
About the Authors
B. Z. MargolinRussian Federation
Dr Sc. (Eng).
49 Shpalernaya St, 191015 St Petersburg
A. A. Sorokin
Russian Federation
Cand Sc. (Eng).
49 Shpalernaya St, 191015 St Petersburg
L. A. Belyaeva
Russian Federation
Cand Sc. (Eng).
49 Shpalernaya St, 191015 St Petersburg
References
1. Zelensky, V.F., Neklyudov, I.M., Chernyaeva, T.P., Radiatsionnye defekty i raspukhanie metallov [Radiation defects and swelling of metals], Kiev: Naukova dumka, 1988.
2. Was, G.S., Fundamentals of Radiation Materials Science, Berlin: Springer-Verlag, 2007.
3. Accelerator simulation and theoretical modelling of radiation effects in structural materials, IAEA Nuclear Energy Series, 2018, No NF-T-2.2, Vienna: IAEA.
4. Was, G.S., et al ., High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation, Simulation of Neutron Damage for High Dose Exposure of Advanced Reactor Materials: Program IRP-RC. URL: https://neup.inl.gov/SiteAssets/FY%202013%20Abstracts/IRP/IRP-University%20of%20Michigan.pdf
5. Was, G.S., Jiao, Z., Getto, E., Sun, K., Monterrosa, A.M., Maloy, S.A., Anderoglu, O., Sencer, B.H., Hackett, M ., Emulation of reactor irradiation damage using ion beams, Scr. Mater., 2014, V. 88, pp. 33–36.
6. Zinkle, S.J., Snead, L.L. , Opportunities and limitations for ion beams in radiation effects studies: Bridging critical gaps between charged particle and neutron irradiations, Scr. Mater., 2018, V. 143, pp. 154–160.
7. T aller, S., Coevering, G.V., Wirth, B.D., Was, G.S . , Predicting structural material degradation in advanced nuclear reactors with ion irradiation, Scientific Reports, 2021, No 11.
8. Rogozhkin, S.V., Nikitin, A.A., Khomich, A.A., et al ., Imitatsionnye eksperimenty na puchkakh tyazhelykh ionov dlya modelirovaniya radiatsionnykh povrezhdeny konstruktsionnykh materialov aktivnoi zony yadernykh i termoyadernykh energeticheskikh ustanovok [Simulation experiments on heavy ion beams to simulate radiation damage to structural materials of the core of nuclear and thermonuclear power plants], Yadernaya fizika i inzhiniring, 2018, V. 9, No 3, pp. 245–258.
9. Grudzevich, O.T., Pechenkin, V.A., Kobets, U.A., et al. , Issledovaniya radiatsionnoi stoikosti konstruktsionnykh materialov na uskoritelyakh ionov [Studies of radiation resistance of structural materials on ion accelerators], VANT, Ser.: Yaderno-reaktornye konstanty, 2022, Is. 3, pp. 127–145.
10. ASTM E521-96: Standard Practice for Neutron Radiation Damage Simulation by Charged-Particle Irradiation, 2017.
11. Taller, S., Jiao, Z., Field, K., Was, G.S. , Emulation of Fast Reactor Irradiated T91 Using Duallon Beam Irradiation, J. Nucl. Mater., 2019, V. 527, No 151831, pp. 1–14.
12. Phythian, W.J., English, C.A. , Microstructural evolution in reactor pressure vessel steels, J. Nucl. Mater., 1993, No 205, pp. 162–177.
13. Margolin, B.Z., Shvetsova, V.A., Gulenko, A.G., Kostylev, V.I. , Prometey local approach to brittle fracture: development and application, Eng. Fracture Mech., 2008, V. 75, pp. 3483–3498.
14. Margolin, B.Z., Shvetsova, V.A., Gulenko, A.G. , Radiation embrittlement modeling in multiscale approach to brittle fracture of RPV steel, Int. J. of Fracture, 2013, V. 179, Is. 1–2, pp. 87–108.
15. Margolin, B.Z., Yurchenko, E.V., Morozov, A.M., Pirogova, N.E., Analiz effekta flaksa neitronov primenitelno k radiatsionnomu okhrupchivaniyu materialov korpusov reaktorov VVER [Analysis of the neutron flux effect in relation to radiation embrittlement of VVER reactor vessel materials], Voprosy Materialovedeniya, 2012, No 2 (70), pp. 177–196.
16. Amaev, A.D., Gorynin, I.V., Nikolaev, V.A. , Radiation Damage of Nuclear Power Plant Pressure Vessel Steels (Russian Materials Monograph Series, 2), Am. Nucl. Soc., 1997.
17. Margolin, B., Fomenko, V., Shvetsova, V., Yurchenko, E. , On the link of the embrittlement mechanisms and microcrack nucleation and propagation properties for RPV steels. Part 2: Fracture properties and modelling, Eng. Fracture Mech., 2022, V. 270.
18. Lidbury, D., Bugat, S., Diard, O., et al ., PERFECT (prediction of irradiation damage effects on reactor components): progress with multiscale modelling in RPV mechanics subproject, Local approach to fracture, Besson, J., Moinerau, D., Steglich, D. (Eds.), Paris: Ecole des Mines de Paris; 2006, pp. 459– 464.
19. Eason, E.D., Odette, G.R., Nanstad, R.K., Yamamoto, T. , A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels, ORNL/TM-2006/530, November, 2007.
20. Kirk, M. , Assessment of flux effect exhibited by IVAR database, Proc. of the IAEA Technical Meeting on Radiation embrittlement and Life Management of Reactor Pressure Vessels, Znojmo, Czech Republic, 18–22 October, 2010.
21. Amaev, A.D., Kryukov, A.M., Neklyudov, I.M., et al. , Radiatsionnaya povrezhdaemost i rabotosposobnost konstruktsionnykh materialov [Radiation damage and operability of structural materials], Parshina, A., Platonova, P. (Eds.), St Petersburg: Politekhnika, 1997.
22. Margolin, B.Z., Yurchenko, E.V., Morozov, A.M., Varovin, A.Ya., Rogozhkin, S.V., Nikitin, A.A. , Issledovanie vliyaniya postradiatsionnogo otzhiga na vosstanovlenie svoistv materialov opornykh konstruktsii korpusov reaktorov VVER-440. Ch. 2: Analiz osobennostei vliyaniya otzhiga materiala posle nizkotemperaturnogo oblucheniya [Investigation of the effect of radiation annealing on the restoration of the properties of the materials of the supporting structures of the VVER-440 reactor housings. Part 2: Analysis of the peculiarities of the effect of annealing of the material after low-temperature irradiation], Voprosy Materialovedeniya, 2022, No 1 (109), pp. 184–198.
23. GOST R 70431–2022: Natsionalny standart Rossiiskoi Federatsii. Materialy oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok. Metody opredeleniya udarnoi vyazkosti i kriticheskoi temperatury khrupkosti po rezultatam ispytany na udarny izgib [The national standard of the Russian Federation. Materials of equipment and pipelines of nuclear power plants. Methods for determining the impact strength and critical temperature of brittleness based on the results of impact bending tests].
24. ASTM E 1921-22a: Standard Test Method for Determination of Reference Temperature, T0, for Ferritic Steels in the Transition Range, Annual Book of ASTM Standards, 2022, V. 03.01.
25. Margolin, B.Z., Gulenko, A.G., Nikolaev, V.A., Ryadkov, L.N. , A new engineering method for prediction of the fracture toughness temperature dependence for RPV steels, Int. J. Pres. Ves. & Piping, 2003, No 80, pp. 17–829.
26. Margolin, B.Z., Gulenko, A.G., Fomenko, V.N., Kostylev, V.I., Further Improvement of the Prometey Model and Unified Curve Method. Part 2: Improvement of the Unified Curve Method, Eng. Fract. Mech., 2018, V. 191, pp. 383–402.
27. Margolin, B.Z., Yurchenko, E.V., Morozov, A.M. , Porogovye i predelnye znacheniya kontsentratsii primesnykh elementov v materiale korpusov reaktorov tipa VVER [Threshold and limit values of concentrations of impurity elements in the material of VVER reactor housings], Voprosy Materialovedeniya, 2013, No 2 (86), pp. 152–163.
28. Busby, J.T., Hash, M.C., Was, G.S. , The relationship between hardness and yield stress in irradiated austenitic and ferritic steels, Journ. Nucl. Materials, 2005, No 336, pp. 267–278.
29. Gorynin, I.V., Nesterova, E.V., Nikolaev, V.A., Rybin, V.V . Microstructure and Mechanical Properties of WWER-440 Reactor Vessel Metal After Service Life Expiration and Recovery Anneal, 17th International Symposium “Effects of Radiation on Materials”, ASTM STR 1270, American Society for Testing and Materials, 1996, pp. 248–259.
30. Lucas, G.E., Odette, G.R., Maiti, R., Sheckherd, J.W. , Tensile Properties of Irradiated Pressure Vessel Steels, Influence of Radiation on Material Properties: 13th International Symposium (Part 2), ASTM STP 956, 1987, pp. 379–394.
31. Higgy, H.R., Hammad, F.H. , Effect of fast neutron irradiation on mechanical properties of stainless steels: AISI types 304, 316 and 347, J. Nucl. Mater., 1975, V. 55, Issue 2, pp. 177–186.
32. Hawthorne, J.R . , Radiation embrittlement, Embrittlement of Engineering Alloys, Briant, C., Banerji, S., (Eds.), New York, 1983.
33. Jones, R., Williams, T. , The Dependence of Radiation Hardening and Embrittlement on Irradiation Temperature, ASTM STP1270-EB, Paper ID: STP16495S.
34. Margolin, B.Z., Yurchenko, E.V. , Dozovye zavisimosti dlya materialov korpusov reaktorov VVER i ikh opornykh konstruktsy [Dose dependences for materials of VVER reactor housings and their supporting structures], Voprosy Materialovedeniya, 2023, No 2 (114), pp. 166–194.
35. Gaganidze, E., Petersen, C., Aktaa, J. , Study of helium embrittlement in boron doped EUROFER97 steels, J. Nucl. Mater., 2009, V. 386–388, pp. 349–352.
36. Lysova, G.V., Birzhevoy, G.A. , Kinetics of the radiation-induced hardening of EP-823 steel after Ni++ ion irradiation, annealing and re-irradiation, Journal of surface investigation, X-ray, synchrotron and neutron techniques, 2012, V. 6, No 2, pp. 326–329.
37. Maloy, S.A., Henry, J. , Irradiation-resistant ferritic and martensitic steels as core materials for Generation IV nuclear reactors. Ch. 9, Structural Materials for Generation IV Nuclear Reactors, 2017, pp. 329– 355.
38. Ivanov, A.A., Shulepin, S.V., Dvoryashin, A.M., Konobeev, Yu.V., Ivanov, S.N., Alekseev, Yu.V., Porollo, S.I. , Struktura i mekhanicheskie svoistva stali EP-823, 20Kh12MN i opytnykh variantov 12%-nykh khromistykh stalei posle neitronnogo oblucheniya v reaktore BN-350 [Structure and mechanical properties of EP-823, 20Kh12MN steel and experimental versions of 12% chromium steels after neutron irradiation in the BN-350 reactor], Sb. dokl. IX Rossiiskoi konferentsii po reaktornomu materialovedeniyu, Dimitrovgrad, 2009, pp. 560–573.
39. Grigorovich, V.K. , Tverdost i mikrotverdost metallov [Hardness and microhardness of metals], Moscow: Nauka, 1976.
40. Golovin, Yu.I. , Nanoindentirovanie i ego vozmozhnosti [Nanoindentation and its possibilities], Moscow: Mashinostroenie, 2009.
41. Dolph, C.K., et al. , Plastic zone size for nanoindentation of irradiated Fe-9%Cr ODS, J. Nucl. Mater., 2016, V. 481, pp. 33–45.
42. Xiao, X., Long, Yu. , Nano-indentation of ion-irradiated nuclear structural materials: A review, Nucl. Mater. Energy. Elsevier, 2020, V. 22, Art. 100721.
43. ISO 14577-4: Metallic Materials – Instrumented Indentation Test for Hardness and Materials Parameters, Part 4: Test Method for Metallic and Nonmetallic Coatings, 2016.
44. Wilkinson, A.J., Britton, B.T. , Strains, planes, and EBSD in materials science, Materials today, 2012, V. 15, Is. 9, pp. 366–376.
45. Gusev, M.N., De Bellefon, G.M., Rosseel, T.M. , Analysis of Localized Deformation Processes in Highly Irradiated Austenitic Stainless Steel through In Situ Techniques: Report of Oak Ridge National Laboratory, Oak Ridge, TN (United States), 2019, ORNL/TM-2019/1274.
46. Kryukov, A.M., Debarberis, L., Hähner, P., et al. , Thermal annealing as a method to predict results of high temperature irradiation embrittlement, J. Nucl. Mater., 2013, V. 432, pp. 501–504.
47. GOST R 8.748-2011: Metally i splavy. Izmerenie tverdosti i drugikh kharakteristik materialov pri instrumentalnom indentirovanii [Metals and alloys. Measurement of hardness and other characteristics of materials during instrumental indentation], 2013.
Review
For citations:
Margolin B.Z., Sorokin A.A., Belyaeva L.A. Simulation of stainless ferritic-martensitic and austenitic steel hardening after irradiation in ion accelerator. Part 1. Development of a methodology for determining the ion mode irradiation of ferritic-martensitic steels. Voprosy Materialovedeniya. 2024;(2(118)):187-211. (In Russ.) https://doi.org/10.22349/1994-6716-2024-118-2-187-211