

Effect of bismuth additives on the thermophysical properties and thermodynamic functions of aluminum alloy AlFe5Si10
https://doi.org/10.22349/1994-6716-2024-117-1-67-78
Abstract
The temperature dependence of the heat capacity of the aluminum alloy AlFe5Si10 with bismuth was studied in the “cooling” mode. It is shown that with increasing temperature, the heat capacity, enthalpy and entropy of alloys increase, and the value of the Gibbs energy decreases. As the amount of bismuth in the initial alloy increases, the heat capacity, enthalpy and entropy of the AlFe5Si10 alloy decrease, while the value of the Gibbs energy increases.
About the Authors
I. N. GanievTajikistan
Dr Sc. (Chem)
299/2 Aini St, 734063 Dushanbe
F. Kholmurodov
Tajikistan
Cand Sc. (Phys-Math)
299/2 Aini St, 734063 Dushanbe
A. G. Safarov
Tajikistan
Dr Sc. (Eng)
299/2 Aini St, 734063 Dushanbe
N. R. Nurov
Tajikistan
1 Mavlonbekov Ave, 735700 Khujand
U. Sh. Yakubov
Tajikistan
PhD
299/2 Aini St, 734063 Dushanbe
References
1. Taylor, J.A., The effect of Iron in Al–Si Casting Alloys, 35th Australian Foundry Institute National Conference, Adelaide, Australia, 2004, pp. 148–157.
2. Kral, M.V., Nakashima, P.N.H., Mitchell, D.R.G., Electron microscope studies of Al–Fe–Si intermetallics in an A1–11 percent alloy, Metallurgical and Materials Transactions A, 2006, V. 37 (6), pp. 1987–1997.
3. Ravi, C., Wolverton, C., Comparison of thermodynamic databases for 3XX and 6XXX aluminum alloys, Metallurgical and Materials Transactions A, 2005, V. 36, pp. 2013–2023.
4. Belov, N.A., Aksenov, A.A., Iron in Aluminium Alloys. Impurity and Alloying Element, London; New York, 2002, pp. 3–7.
5. Belov, N.A., Fazovy sostav promyshlennykh i perspektivnykh aluminievykh splavov [Phase composition of industrial and promising aluminum alloys], Moscow: MISiS, 2010.
6. Dominik, B., Stefan, P., Marc, H., Werner, F., Peter, J.U., Mathias, G., Heinz, W.H. Secondary Al–Si–Mg High-pressure Die Casting Alloys with Enhanced Ductility, Metallurgical and Materials Transactions A, 2015, V. 46, pp. 1035–1045.
7. Maltsev, M.V., Modifitsirovanie struktury metallov i splavov [Modification of the structure of metals and alloys], Moscow: Metallurgiya, 1984.
8. Golovko, O., Mamuzić, I., Grydino, O., Method for Pocket Die Design on the Basis of Numerical Investigation of Aluminium Extrusion Process, Metalurgiya, 2006, V. 45, No 3, pp. 155–161.
9. Markoli, B., Spaić, S., Zupanič, F., Aluminium, 2004, V. 80, No ½, pp. 84–88.
10. Mondolfo, L.F., Struktura i svoistva alyuminievykh splavov [Structure and properties of aluminum alloys], Moscow: Metallurgiya 1979.
11. Kaufman, J.G., Rooy, E.L., Aluminum alloy castings: properties, processes, and applications, Materials Park: ASM International, 2004.
12. Zinoviev, V.E., Teplofizicheskie svoistva metallov pri vysokikh temperaturakh [Thermophysical properties of metals at high temperatures]: reference book, Moscow: Metallurgiya, 1989.
13. Ganiev, I.N., Yakubov, U.Sh., Khakimov, A.H., Svoistva alyuminievogo splava AZh5K10 s shchelochnozemelnymi metallami [Properties of aluminum alloy AZH5K10 with alkaline earth metals], Dushanbe: Donish, 2021.
14. Ivantsov, G.P., Nagrev metalla (teoriya i metody rascheta) [Metal heating (theory and calculation methods)], Sverdlovsk; Moscow: Metallurgizdat, 1948.
15. Bagnitsky, V.E., Obratnye svyazi v fizicheskikh yavleniyakh [Feedbacks in physical phenomena], LAP (Lambert Acad. Publ.), 2014.
16. Kirov, S.A., Kozlov, A.V., Saletsky, A.M., Kharabadze, D.E., Izmerenie teploemkosti i teploty plavleniya metodom okhlazhdeniya [Measurement of heat capacity and melting heat by cooling method]: study guide, Moscow: Fizichesky fakultet MGU im. M. V. Lomonosova, 2012.
17. Tarsin, A.V., Kosterin, K.S., Opredelenie teploemkosti metallov metodom okhlazhdeniya [Determination of the heat capacity of metals by the cooling method]: laboratory classes, Ukhta: Ukhtinsky gosudarstvenny tekhnichesky universitet, 2014.
18. Rogachev, N.M., Guseva, S.I., Opredelenie udelnoi teploemkosti tverdykh tel [Determination of the specific heat capacity of solids], Samara: Samarsky gosudarstvenny aerokosmichesky universitet im. akad. S.P. Koroleva, 2012.
19. Stark, B.V., Yavleniya nagreva v mufelnykh pechakh [Heating phenomena in muffle furnaces], Zhurn. russkogo metallurgicheskogo obshchestva, 1926, No 2, pp. 184–198.
20. Umarov, M.A. Ganiev, I.N., Temperaturnaya zavisimost teploemkosti i izmenenie termodinamicheskikh funktsii svintsa marki S2 [Temperature dependence of the heat capacity and changes in the thermodynamic functions of C2 lead], Izvestiya Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk, 2018, V. 20, No 1, pp. 23–29.
21. Ganiev, I.N., Safarov, A.G., Odinaev, F.R., Yakubov, U.Sh., Kabutov, K., Temperaturnaya zavisimost teploemkosti i izmenenie termodinamicheskikh funktsii splava AZh 4.5 s olovom [The temperature dependence of the heat capacity and the change in the thermodynamic functions of the alloy AS much as 4.5 with tin], Izv. VUZov: Tsvetnaya metallurgiya, 2019, No 1, pp. 50–58.
22. Ganiev, I.N., Safarov, A.G., Odinaev, F.R., Yakubov, U.Sh., Kabutov, K., Temperaturnaya zavisimost' teploemkosti i izmenenij termodinamicheskih funkcij splava AZh4,5 s vismutom [Temperature dependence of the heat capacity and changes in the thermodynamic functions of the alloy AZh4.5 with bismuth], Metally, 2019, No 1, pp. 21–29.
23. Ganiev, I.N., Safarov, A.G., Odinaev, F.R., Yakubov, U.Sh., Kabutov, K., Temperature Dependence of the Specific Heat and the Changes in the Thermodynamic Functions of a Bismuth-Bearing AZh4.5 Alloy, Russian Metallurgy (Metally), 2020, V. 1, pp. 17–24.
24. Ganiev, I.N., Nazarova, M.T., Yakubov, U.Sh., Safarov, A.G., Kurbonova, M.Z., Influence of Lithium on Specific Heat Capacity and Changes in the Thermodynamic Functions of Aluminum Alloy AB1, High Temperature, 2020, V. 58, No 1, pp. 58–63.
25. Glazov, V.M., Pashinkin, A.S., Teplofizicheskie svoistva (teploemkost i termicheskoe rasshirenie) monokristallicheskogo kremniya [Thermophysical properties (heat capacity and thermal expansion) of monocrystalline silicon], TVT, 2001, V. 39, No 3, pp. 443–449.
26. Glazov, V.M., Pashinkin, A.S., Mikhailova, M.S., Timoshina, G.G., Anomalnoe izmenenie teploemkosti pri nagrevanii monokristallov kremniya v svyazi s protekaniem strukturnykh prevrashchenii [Abnormal change in heat capacity during heating of silicon single crystals due to the course of structural transformations], Doklady RAN, 1997,V. 334, No 1, pp. 59.
27. Glazov, V.M., Mikhailova, M.S., Izmenenie kharakteristik prochnosti mezhatomnoi svyazi i kharaktera temperaturnoi zavisimosti teploemkosti pri legirovanii kremniya niobiem [Changes in the characteristics of the strength of the interatomic bond and the nature of the temperature dependence of the heat capacity when silicon is doped with niobium], Doklady RAN, 1998, V. 360, No 2, pp. 209.
28. Glazov, V.M., Mikhailova, M.S., Kharakteristiki mezhatomnoi svyazi i temperaturnaya zavisimost teploemkosti kremniya, legirovannogo niobiem [Characteristics of the interatomic bond and temperature dependence of the heat capacity of niobium-doped silicon], ZhFCh, 1998, V. 72, No 11, pp. 1931.
29. Deviatykh, G.G., Gusev, A.V., Gibin, L.M., et al., Teploemkost vysokochistogo kremniya [Heat capacity of high-purity silicon], Doklady RAN, 1997, V. 353, No 6, p. 768.
30. Deviatykh, G.G., Gusev, A.V., Gibin, L.M., et al., Teploemkost vysokochistogo kremniya [Heat capacity of high-purity silicon], Neorgan. Materialy, 1997, V. 33, No 12, p. 1425.
31. Timofeev, O.V., Teploemkost vysokochistogo kremniya [Heat capacity of high-purity silicon]: Thesis for the degree of Candidate of Chemistry, Nizhny Novgorod: Institute of High-Purity Chemistry RAS, 1999.
Review
For citations:
Ganiev I.N., Kholmurodov F., Safarov A.G., Nurov N.R., Yakubov U.Sh. Effect of bismuth additives on the thermophysical properties and thermodynamic functions of aluminum alloy AlFe5Si10. Voprosy Materialovedeniya. 2024;(1(117)):67-78. (In Russ.) https://doi.org/10.22349/1994-6716-2024-117-1-67-78