

Computational modeling of the process of reducing hydrogen content during anti-flock heat treatment. Solving the diffusion problem
https://doi.org/10.22349/1994-6716-2024-119-3-06-16
Abstract
The paper considers factors influencing the change in hydrogen concentration in forgings made of medium-alloy steels. The computational modeling of the kinetics of changes in the hydrogen content under various variants of preliminary heat treatment is performed. It is shown that it is possible to achieve maximum completeness of hydrogen removal during diffusion processes of austenite transformation under isothermal conditions at the accumulation stage and during direct isothermal annealing (taking into account the increase in the diffusion coefficient of hydrogen in the γ- and α-phases by several orders of magnitude).
About the Authors
V. V. TsukanovRussian Federation
Dr Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
D. L. Smirnova
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
V. A. Karkhin
Russian Federation
Dr Sc. (Eng)
29 Politekhnicheskaya St, 195251 St Petersburg
P. N. Khomich
Russian Federation
Cand Sc. (Eng)
29 Politekhnicheskaya St, 195251 St Petersburg
S. V. Efimov
Russian Federation
Cand Sc. (Eng)
4 St Sharikopodshipnikovskaya, 115088 Moscow
References
1. Frolov, V.V., Povedenie vodoroda pri svarke plavleniem [Behavior of hydrogen during fusion welding], Moscow: Mashinostroenie, 1966.
2. Dyakov, Yu.G., Karkhin, V.A., Anikovsky, V.V., Kinetika deformatsii napryazhenii pri mnogoprokhodnoi svarke plastin iz bimetalla [Kinetics of deformations and stresses during multi-pass welding of bimetal plates], Avtomaticheskaya svarka, 1984, No 8, pp. 14–18.
3. Karkhin, V.A., Tsukanov, V.V., Novikov, E.V., Khomich, P.N., Analiz diffuzii vodoroda pri termicheskoi protivoflokennoi obrabotke stali [Analysis of hydrogen diffusion during thermal anti-flock treatment of steel], Chernye metally, 2013, No 4, pp. 68–72.
4. Lykov, A.V., Teoriya teploprovodnosti [Theory of thermal conductivity], Moscow: Vysshaya shkola, 1967.
5. Böllinghaus, T., Hoffmeister, H., Middel, C., Scatterbands for hydrogen coefficients in steels having a ferritic of martensitic microstructure and steels having an austenitic microstructure at room temperature, Welding in the World, 1996, V. 37, No 1, pp. 16–23.
6. Ray, G.P., Jarman, R.A., Thomas, J.G.N., Some aspects of crack initiation in mild steel under corrosion fatigue condition, J. Mater. Sci., 1994, V. 29, pp. 47–53.
7. Kazantsev, E.I., Promyshlennye pechi [Industrial furnaces]: Design and calculation reference book, Moscow: Metallurgiya, 1975.
8. Karkhin, V.A., et al., Metallurgicheskie osnovy svarki. Nagrev i kristallizatsiya [Metallurgical fundamentals of welding. Heating and crystallization]: study book, St Petersburg: Polytechnic University, 2014.
9. Tsukanov, V.V., Smirnova, D.L., Karkhin. V.A., Khomich, P.N., Efimov, S.V., Reshenie zadachi teploprovodnosti dlya raschetnogo modelirovaniya protsessa snizheniya soderzhaniya vodoroda pri protivoflokennoi termicheskoi obrabotke [Solving the problem of thermal conductivity for computational modeling of the process of reducing the hydrogen content during anti-flock heat treatment], Voprosy Materialovedeniya, 2023, No 3 (115), pp. 68–75.
Review
For citations:
Tsukanov V.V., Smirnova D.L., Karkhin V.A., Khomich P.N., Efimov S.V. Computational modeling of the process of reducing hydrogen content during anti-flock heat treatment. Solving the diffusion problem. Voprosy Materialovedeniya. 2024;(3(119)):6-16. (In Russ.) https://doi.org/10.22349/1994-6716-2024-119-3-06-16