

Influence of thermal treatment of niobium substrate on thermal stability of palladium protective-catalytic coating
https://doi.org/10.22349/1994-6716-2024-117-1-149-158
Abstract
The influence of recrystallization annealing of niobium substrate on the thermal stability of palladium protective-catalytic coating has been studied. So, it was found that the coating on recrystallized substrate has higher thermal stability compared to the coating on cold-rolled substrate. The obtained results allow us to solve the problem of limited thermal stability of palladium protective-catalytic coating for composite membranes made of Group 5 metal under the conditions of their operation.
About the Authors
S. R. KuzenovRussian Federation
22/1 Bolshevikov Ave, 193232 St Petersburg
A. O. Busnyuk
Russian Federation
Cand Sc. (Phys-Math)
22/1 Bolshevikov Ave, 193232 St Petersburg
V. N. Alimov
Russian Federation
Cand Sc. (Phys-Math)
22/1 Bolshevikov Ave, 193232 St Petersburg
A. I. Livshits
Russian Federation
Dr. Sc. (Phys-Math)
22/1 Bolshevikov Ave, 193232 St Petersburg
E. Yu. Peredistov
Russian Federation
Cand Sc. (Eng)
22/1 Bolshevikov Ave, 193232 St Petersburg
References
1. Watanabe, T., Funke, H., Torres, R., Raynor, M., Vininski, J., Contamination control in gas delivery systems for MOCVD, Journal of Crystal Growth, 2003, V. 248, pp. 67–71.
2. Tong, J., Shirai, R., Kashima, Y., Matsumura, Y., Preparation of a pinhole-free Pd–Ag membrane on a porous metal support for pure hydrogen separation, J. Membr. Sci., 2005, V. 260, pp. 84–89.
3. Kuraoka, K., Zhao, H., Yazawa, T., Pore-filled palladium-glass composite membranes for hydrogen separation by novel electroless plating technique, J. Mat. Sci., 2004, No 39, pp. 1879–1881.
4. Yan, S., Maeda, H., Kusakabe, K., Morooka, S., Thin palladium membrane formed in support pores by metal organic chemical vapor deposition method and application to hydrogen separation, Industrial & Engineering Chemistry Research, 1994, V. 33 (3), pp. 616– 622.
5. Shi, Z., Wu, S., Szpunar, A., Rosh, M., An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition, J. Membr. Sci., 2006, V. 280, pp. 705–711.
6. Livshits, A., Sube, F., Notkin, M., Soloviev, M., Bacal, M., Plasma Driven Suprerpermeation of Hydrogen through Group Va Metals, J. Appl. Phys., 1998, V. 84, pp. 2558–2564.
7. Zhang, G.X., Yukawa, H., Watanabe, N., Saito, Y., Fukaya, H., Morinaga, M., Nambu, T., Matsumoto, Y., Analysis of hydrogen diffusion coefficient during hydrogen permeation through pure niobium, Int. J. Hydrogen Energy, 2008, V. 33, pp. 4419–4423.
8. Dolan, M.D., Viano, D.M., Langley, M.J., Lamb, K.E., Tubular vanadium membranes for hydrogen purification, J. Membr. Sci., 2018, V. 549, pp. 306–311.
9. Buxbaum, R.E., Kinney, A.B., Hydrogen Transport through Tubular Membranes of PalladiumCoated Tantalum and Niobium, Ind. Eng. Chem. Res., 1996, V. 35, pp. 530–537.
10. Moss, T.S., Peachey, N.M., Snow, R.C., Dye, R.C., Multilayer metal membranes for hydrogen separation, Int. J. Hydrogen Energy, 1998, V. 23, No 2, pp. 99–106.
11. Alimov, V.N., Busnyuk, A.O., Notkin, M.E., Livshits, A.I., Pd–V–Pd composite membranes: Hydrogen transport in a wide pressure range and mechanical stability, J. Memb. Sci., 2014, V. 457, pp. 103–112.
12. Alimov, V.N., Bobylev, I.V., Busnyuk, A.O., Kolgatin, S.N., Kuzenov, S.R., Peredistov, E. Yu., Livshits, A.I., Extraction of ultrapure hydrogen with V-alloy membranes: From laboratory studies to practical applications, Int. J. Hydrogen Energy, 2018, V. 29, pp. 13318–13327.
13. Huang, F., Xinzhong, L., Shan, X., Guo, J., Gallucci, F., Sint, M., Liu, D., Hydrogen transport through the V–Cr–Al alloys: Hydrogen solution, permeation and thermal-stability, Separation and Purification Technology, 2020, V. 240.
14. Gahr, S., Birnbaum, H.K., Hydrogen embrittlement of niobium – high temperature behavior Acta Metall., 1978, V. 26, pp. 1781–1788.
15. Nambu, T., Shimizu, K., Matsumoto, Y., Rong, R., Watanabe, N., Yukawa, H., Morinaga, M., Yasuda, I., Enhanced hydrogen embrittlement of Pd-coated niobium metal membrane detected by in situ small punch test under hydrogen permeation, J. Alloys Compd., 2007, V. 446–447, pp. 588–592.
16. Yukawa, H., Nambu, T., Matsumoto, Y., V–W alloy membranes for hydrogen purification, J. Alloys Compd., 2011, V. 509, pp. 881–884.
17. Edlund, D.J., McCarthy, J., The relationship between intermetallic diffusion and flux decline in composite-metal membranes: implications for achieving long membrane lifetime, J. Membr. Sci., 1995, V. 107, pp. 147–153.
18. Hatano, Y., Ishiyama, K., Homma, H., Watanabe, K., Improvement in high temperature stability of Pd coating on Nb by Nb2C intermediate layer, Int. J. Hydrogen Energy, 2007, V. 32, pp. 615–619.
19. Busnyuk, A.O., Notkin, M.E., Grigoriadi, I.P., Alimov, V.N., Livshits, A.I., Termicheskaya degradatsiya palladievogo pokrytiya vodorodopronitsaemykh membran iz niobiya [Thermal degradation of palladium coating of hydrogen permeable niobium membranes], ZhTF, 2010, No 80 (1), pp. 117–124.
20. Nozaki, T., Hatano, Y., Yamakawa, E., Hachikawa, A., Ichinose, K., Improvement of high temperature stability of Pd coating on Ta by HfN intermediate layer, Int. J. Hydrogen Energy, 2010, V. 35, pp.12454–12460
21. Fuerst, T., Zhang, Z., Hentges, A., Lundin, S., Wolden, C., Way, D., Fabrication and operational considerations of hydrogen permeable Mo2C/V metal membranes and improvement with application of Pd, J. Membr. Sci., 2018, V. 549, pp. 559–566.
22. Alimov, V.N., Hatano, Y., Busnyuk, O.A., Livshits, D.A., Notkin, M.E., Livshits, A.I., Hydrogen permeation through the Pd–Nb–Pd composite membrane: Surface effects and thermal degradation, Int. J. Hydrog. Energy, 2011, V. 36, No 13, pp. 7737–7746.
23. Fluri, A., Pergolesi, D., Wokaun, A., Lippert, T., Stress generation and evolution in oxide heteroepitaxy, Phys. Rev., 2018, V. 97, Art. 125412–20.
24. Hovsepian, P.E., Sugumaran, A.A., Purandare, Y., Loch, D.A.L., Ehiasarian, A.P., Effect of the degree of high power impulse magnetron sputtering utilisation on the structure and properties of TiN films, Thin Solid Films, 2014, V. 562.
25. Novikova, S.I., Teplovoe rasshirenie tverdykh tel [Thermal expansion of solids], Moscow: Nauka, 1974.
26. Shugurov, A.R., Panin, A.V., Mekhanizmy vozniknoveniya napryazhenij v tonkikh plenkakh i pokrytiyakh [Mechanisms of stress occurrence in thin films and coatings], ZhTF, 2020, No 90 (12).
27. Fisher, J.C.J., Calculation of Penetration Curves of Surface and Grain Boundary Diffusion, Appl. Phys., 1951, V. 22, pp. 74–80.
28. Kaur, I., Mishin, Y., Gust, W., Fundamentals of Grain and Interphase Boundary Diffusion, Chichester West Sussex: Wiley, 1995.
Review
For citations:
Kuzenov S.R., Busnyuk A.O., Alimov V.N., Livshits A.I., Peredistov E.Yu. Influence of thermal treatment of niobium substrate on thermal stability of palladium protective-catalytic coating. Voprosy Materialovedeniya. 2024;(1(117)):149-158. (In Russ.) https://doi.org/10.22349/1994-6716-2024-117-1-149-158