Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

The effect of ultrasonic treatment of a cured monolayer formed by three-dimensional printing from a prepreg reinforced with continuous carbon fiber on the resistance to the flow of solid particles

https://doi.org/10.22349/1994-6716-2024-117-1-159-173

Abstract

—The effect of ultrasonic processing at resonant frequencies of 22 and 44 kHz of a monolayer formed by three-dimensional printing from prepregs reinforced with continuous carbon fiber on the resistance to the flow of solid particles by imitating it by jet-abrasive treatment is investigated.
The increment of the weight of both control and experimental samples in comparison with the initial state was established. It is shown that the force effect of ultrasound in rational modes contributes to a decrease in weight gain by 31.4% when processed at a frequency of 22 kHz and by 9% when processed at a frequency of 44 kHz. The decrease in weight increment is determined by an increase in the density of the monolayer structure after ultrasonic exposure, which leads to an increase in surface hardness in units of Schor-D by 13.5% at a frequency of 22 kHz and by 10% at a frequency of 44 kHz.

About the Authors

I. V. Zlobina
Yuri Gagarin Saratov State Technical University; National Research Centre “Kurchatov Institute”
Russian Federation

Cand Sc. (Eng) 

77 Polytekhnisheskaya St, Saratov, 410054 Saratov;
1 Academician Kurchatov Square, 123182 Moscow



N. V. Bekrenev
Yuri Gagarin Saratov State Technical University
Russian Federation

Dr Sc. (Eng) 

77 Polytekhnisheskaya St, Saratov, 410054 Saratov



A. S. Egorov
National Research Centre “Kurchatov Institute”
Russian Federation

Cand Sc. (Chem) 

1 Academician Kurchatov Square, 123182 Moscow



A. V. Anisimov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc. (Eng) 

49 Shpalernaya St, 191015 St Petersburg



References

1. Mikhailin, Yu.A., Spetsialnye polimernye kompozitsionnye materialy [Special polymer composite materials], St Petersburg: Nauchnye osnovy i tekhnologii, 2008.

2. Mikhailin, Yu.A., Konstruktsionnye polimernye kompozitsionnye materialy [Structural polymer composite materials], St Petersburg: Nauchnye osnovy i tekhnologii, 2010.

3. Studentsov, V.N., Kuznetsov, V.A., Zubtsova, N.V., Cheremukhina, I.V., Armirovannye kompozitsionnye materialy stroitelnogo naznacheniya [Reinforced composite materials for construction purposes]: Composite materials in industry. Proceedings of the 29th International Conference on June 1–5, 2009, Yalta; Kiev, Part 1, pp. 357–359.

4. Kablov, E.N., Innovatsionnye razrabotki FGUP VIAM GNTs RF po realizatsii Strategicheskikh napravlenii razvitiya materialov i tekhnologij ikh pererabotki na period do 2030 goda [Innovative developments of FSUE VIAM of the State Research Center of the Russian Federation on the implementation of “Strategic directions for the development of materials and technologies for their processing for the period up to 2030”], Aviatsionnye materialy i tekhnologii, 2015, No 1, pp. 3–33.

5. Kablov, E.N., Materialy i khimicheskie tekhnologii dlya aviatsionnoi tekhniki [Materials and chemical technologies for aviation equipment], Vestnik Rossiiskoi akademii nauk, 2012, V. 82, No 6, pp. 520–530.

6. Mirovoi rynok proizvodstva kompozitov [The global market for the production of composites]: Armplast site. URL: https://arm-plast.ru/o-zavode/novosti/mirovoj-ryinok-proizvodstva-kompozitov.html (reference date: 20.10.2023).

7. Doriomedov, M.S., Rossiisky i mirovoi rynok polimernykh kompozitov [Russian and global polymer composites market]: review, Trudy VIAM, 2020, No 6–7, pp. 29–37.

8. Kovalenko, V.A., Kondratiev, A.V., Primenenie polimernykh kompozitsionnykh materialov v izdeliyakh raketno-kosmicheskoi tekhniki kak rezerv povysheniya ee massovoi i funktsionalnoi effektivnosti [The use of polymer composite materials in rocket and space technology products as a reserve for increasing its mass and functional efficiency]: Analytical review, Aviatsionno-kosmicheskaya tekhnika i tekhnologiya, 2011, No 5, pp. 14–20.

9. Deev, I.S., Nikishin, E.F., Model kosmosa [Space model], Moscow: KDU, 2007, V. 2.

10. Letin, V.A., Gatchenko, L.S., Deev, I.S., et al., Proc. of Sixth International Space Conference “Protection of Materials and Structures from Space Environment”, Toronto, Canada, May 1–3, 2002, pp. 461–474.

11. Kablov, E.N., Minakov, V.T., Deev, I.S., Nikishin, E.F., Protection of Materials and Structures from Space Environment, Series: Space Technology Proceedings, J.I. Kleiman, Z. Iskanderova, (Eds.), Kluwer Acad. Publ., 2003, pp. 217–233.

12. Polezhaev, Yu.V., Reznik, S.V., Vasilevsky, E.B., et al., Materialy i pokrytiya v ekstremalnykh usloviyakh. Vzglyad v budushchee: V. 1: Prognozirovanie i analiz ekstremalnykh vozdeistvii [Materials and coatings in extreme conditions. A look into the future, V. 1: Forecasting and analysis of extreme impacts], Reznik, S.V. (Ed.), Moscow: Izd-vo MGTU im. N. E. Baumana, 2002.

13. Gorynin, I.V., Konstruktsionnye materialy – vazhny element nadezhnosti i ekologicheskoi bezopasnosti infrastruktury Arktiki [Structural materials are an important element of reliability and environmental safety of the Arctic infrastructure], Arktika: ekologiya i ekonomika, 2011, No 3, pp. 82–87.

14. Buznik, V.M., Kablov, E.N., Koshurina, A.A., Materialy dlya slozhnykh tekhnicheskikh ustroistv arkticheskogo primeneniya [Materials for complex technical devices of Arctic application], Proceedings of the conference “Scientific and technical problems of Arctic development”, 16 December 2014, Moscow, 2015, pp. 275–285.

15. Dezhina, I.G., Ponomarev, A.K., Frolov, A.S., et al., Publichny analitichesky doklad po razvitiyu novykh proizvodstvennykh tekhnologii [Public analytical report on the development of new production technologies], Moscow: Skolkovsky institut nauki i tekhnologij, 2015.

16. Ponomarev, A.K., Frolov, A.S., Zorin, D.N., Psahe, S.G., et al., Novye proizvodstvennye tekhnologii [New production technologies]: Public analytical report, Moscow: Delo, 2015.

17. The European Construction and sustainable built environment Technology Platform (ECTP). URL: http://www.ectp.org (reference date: 20.10.2023).

18. European Technology Platform for Advanced Engineering Materials and Technologies. URL: http://www.eumat.eu (reference date: 20.10.2023).

19. The European Space Agency. URL: http://estp.esa.int (reference date: 20.10.2023).

20. Proidakov, E.M., 3D-pechat kak novoe nauchno-tekhnicheskoe napravlenie [3D printing as a new scientific and technical direction], Naukovedcheskie issledovaniya, 2014, No 1, pp. 146–154.

21. Gibson, Ya., Rozen, D., Staker, B., Tekhnologii additivnogo proizvodstva. Trekhmernaya pechat, bystroe prototipirovanie i pryamoe tsifrovoe proizvodstvo [Additive manufacturing technologies. Three-dimensional printing, rapid prototyping and direct digital production], Moscow: Tekhnosfera, 2016.

22. Bikas, H., Stavropoulos, P., Chryssolouris, G., Additive Manufacturing methods and modeling approaches: a critical review, International Journal of Advanced Manufacturing Technology, 2016, V. 83, pp. 389–405. DOI: 10.1007/s00170-015-7576-2.

23. Rynok tekhnologii 3D-pechati v Rossii i mire: perspektivy vnedreniya additivnykh tekhnologii v proizvodstvo [The market of 3D printing technologies in Russia and the world: prospects for the introduction of additive technologies into production], CAD/CAM/CAE Observer, 2021, No 1, pp. 42–51.

24. Balashov, A.V., Markova, M.I., Issledovanie struktury i svoistv izdelii, poluchennykh 3D-pechatyu [Investigation of the structure and properties of products obtained by 3D printing], Inzhenerny vestnik Dona, 2019, No 1, p. 66.

25. Petrov, V.M., Bezpalchuk, S.N., Yakovlev, S.P., O vliyanii struktury na prochnost izdelii iz plastikov, poluchaemykh metodom 3D-pechati [On the effect of structure on the strength of plastic products produced by 3D printing], Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova, 2017, V. 9, No 4, pp. 765–776. DOI: 10.21821/2309-5180-2017-9-4-765-776.

26. Matsuzaki, R., Ueda, M., Namiki, M., Jeong, T.K., et al., Three-dimensional printing of continuousfiber composites by in-nozzle impregnation, Sci Rep., 2016. DOI: 10.1038/srep23058.

27. Ning, F., Cong, W., Qiu, J., Wei, J., Wang, S., Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling, Composites Part B-engineering, 2015, V. 80, pp. 369–378.

28. Invernizzi, M., Natale, G., Levi, M., Turri, S., Griffini, G., UV-Assisted 3D Printing of Glass and Carbon Fiber-Reinforced Dual-Cure Polymer Composites, Materials, 2016, No 9 (7), p. 583. DOI: 10.3390/ma9070583.

29. Polyzos, E., Katalagarianakis, A., Van Hemelrijck, D., Pyl, l., Polyzos, D., A Multi Scale Analytical Methodology for the Prediction of Mechanical Properties of 3D-printed Materials with continuous Fibres, Additive Manufacturing, 2020, V. 36, p. 101394. DOI: 10.1016/j.addma.2020.101394.

30. Wang, F., Wang, G., Zhang, Z., Ning, F., Fiber-matrix Impregnation Behavior During Additive Manufacturing of continuous Carbon Fiber reinforced Polylactic Acid Composites, Additive Manufacturing, 202, V. 37, p. 101661. DOI: 10.1016/j.addma.2020.101661.

31. Kuleznev, V.S., Shershnev, A.S., Khimicheskaya i fizicheskaya modifikatsiya polimerov [Chemical and physical modification of polymers], Moscow: Khimiya, 1990.

32. Studentsov, V.N., Fizicheskaya modifikatsiya armirovannykh reaktoplastov [Physical modification of reinforced thermoplastics], Vestnik SGTU, 2011, No 4, V. 3.

33. Negrov, D. A., Vliyanie energii ultrazvukovykh kolebanii na strukturu i svoistva polimernogo kompozitsionnogo materiala na osnove politetraftoretilena [The effect of ultrasonic vibration energy on the structure and properties of a polymer composite material based on polytetrafluoroethylene]: Thesis for the degree of Candidate of Sciences, Omsk, 2009.

34. Lionetto, F., Dell’Anna, R., Montagna, F., Maffezolli, A., Ultrasonic assisted consolidation of commingled thermoplastic/glass fiber rovings, Frontiers in Materials, 2015, V. 2, pp. 1–9. DOI: 10.3389/fmats.2015.00032.


Review

For citations:


Zlobina I.V., Bekrenev N.V., Egorov A.S., Anisimov A.V. The effect of ultrasonic treatment of a cured monolayer formed by three-dimensional printing from a prepreg reinforced with continuous carbon fiber on the resistance to the flow of solid particles. Voprosy Materialovedeniya. 2024;(1(117)):159-172. (In Russ.) https://doi.org/10.22349/1994-6716-2024-117-1-159-173

Views: 50


ISSN 1994-6716 (Print)