Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Proton irradiation influence on the structure and properties of composite ceramics of the YSZ–SiO2–Al2O3 composition

https://doi.org/10.22349/1994-6716-2024-119-3-46-56

Abstract

The effect of proton irradiation with a power of 1·1017 units/cm2 and an energy of 2 MeV on the structure and properties of composite ceramics of the composition ZrO2–SiO2–Al2O3 is shown. It has been established that at this irradiation dose, the phase composition of the ceramic does not change. Calculations using X-ray diffraction methods have shown that proton irradiation creates compressive stresses (stresses of the 1st kind) ranging from ~–1 to –2 GPa on the surface of field ceramics, while microstresses (stresses of the 2nd kind) are practically absent. Analysis of SEM images of the ceramic surface after irradiation showed a chaotic arrangement of macropores in the t–ZrO2 matrix, while pores in zircon particles are located exclusively along the boundaries of inclusions. A decrease in the level of hardness and density in ceramics after proton treatment was noted due to the formation of a large number of pores.

About the Authors

D. R. Belichko
A.A. Galkin Donetsk Institute for Physics and Engineering
Russian Federation

Cand Sc. (Phys-Math)

2 St Rosa Luxemburg, 283114 Donetsk



G. K. Volkova
A.A. Galkin Donetsk Institute for Physics and Engineering
Russian Federation

2 St Rosa Luxemburg, 283114 Donetsk



A. V. Maletsky
A.A. Galkin Donetsk Institute for Physics and Engineering; Joint Institute for Nuclear Research
Russian Federation

2 St Rosa Luxemburg, 283114 Donetsk

6 St Joliot Curie, 141980 Dubna, Moscow Region



R. Sh. Isaev
Joint Institute for Nuclear Research
Russian Federation

6 St Joliot Curie, 141980 Dubna, Moscow Region



References

1. Dmitrievsky, A.A., Zhigacheva, D.G., Efremova, N.Yu., et al., Diagnostika predela prochnosti na rastyazhenie ATZ-keramiki s razlichnym soderzhaniem SiO2 metodom brazilskogo testa, Fizika tverdogo tela, 2022, V. 64, No 8, pp. 1018–1021.

2. Leonov, A.A., Abdulmenova, E.V., Kalashnikov, M.P., Li Czin, Vliyanie nanovolokon Al2O3 na uplotnenie, fazovy sostav i fiziko-mekhanicheskie svoistva kompozitov na osnove ZrO2, poluchennykh svobodnym vakuumnym spekaniem [The effect of Al2O3 nanofibers on the sealing, phase composition and physico-mechanical properties of ZrO2-based composites obtained by free vacuum sintering], Voprosy Materialovedeniya, 2020, No 4 (104), pp.132–143.

3. Ziganshin, I.R., Porozova, S.E., Trapeznikov, Yu.F., Poluchenie poristogo materiala na osnove nanodispersnogo poroshka ZrO2 – 5 mol.%SeO2 [Obtaining a porous material based on nanodisperse powder ZrO2 – 5 mol.%CeO2], Voprosy Materialovedeniya, 2010, No 4 (64), pp.79–84.

4. Dmitrievsky, A.A., Zhigachev, A.O., Zhigacheva, D.G., Rodaev, V.V., Vliyanie dioksida kremniya na stabilnost fazovogo sostava i mekhanicheskie svoistva keramiki na osnove dioksida tsirkoniya, uprochnennoi oksidom alyuminiya [The effect of silicon dioxide on the stability of the phase composition and mechanical properties of ceramics based on zirconium dioxide, reinforced with aluminum oxide], Zhurnal tekhnicheskoi fiziki, 2020, V. 90, No 12, pp. 2108–2117.

5. Khaskhoussi, A., Calabrese, L., Currò, M., et al., Effect of the Compositions on the Biocompatibility of New Alumina–Zirconia–Titania Dental Ceramic Composites, Materials, 2020, No 13, pp. 122586.

6. Chaika, E.V., Akimov, G.Ya., Timchenko, I.M., Osobennosti ispolzovaniya kholodnogo izostaticheskogo pressovaniya v tekhnologii konstruktsionnoi keramiki iz ultradispersnykh oksidnykh poroshkov [Features of the use of cold isostatic pressing in the technology of structural ceramics made of ultrafine oxide powders], Ogneupory i tekhnicheskaya keramika, 2006, No 8, pp. 27–32.

7. Glazunov, F.I., Volkova, G.K., Konstantinova, T.E., et al., Fazovaya stabilnost keramiki na osnove nanoporoshkov ZrO2 – 3 mol.% Y2O3, kompaktirovannykh v usloviyakh vysokogo gidrostaticheskogo davleniya [Phase stability of ceramics based on ZrO2 – 3 mol.% Y2O3 nanopowders compacted under high hydrostatic pressure], Fizika i tekhnika vysokikh davleny, 2014, V. 24, No 3–4, pp.100–110.

8. Konstantinova, T.E., Danilenko, I.A., Gorban, O.A., Effekty vliyaniya vysokikh davleny v nanorazmernykh poroshkovykh sistemakh na osnove dioksida tsirkoniya [Effects of high pressure in nanoscale powder systems based on zirconium dioxide], Fizika i tekhnika vysokikh davleny, 2014, V. 24, No 2, pp. 67–85.

9. Juntavee, N., Attashu, S., Effect of sintering process on color parameters of nano-sized yttria partially stabilized tetragonal monolithic zirconia, J Clin Exp Dent., 2018, No 10 (8), pp. 794–804.

10. Takahashi, N., Suda, A., Hachisuka I., et al., Sulfur durability of NOX storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2–TiO2 mixed oxides, Applied Catalysis B: Environmental, 2007, V. 72, No 1–2, pp. 187–195.

11. Dmitrievsky, A.A., Zhigacheva, D.G., Mekhanicheskie svoistva kompozitsionnoi keramiki ZrO2 (CaO) – Al2O3 s razlichnym soderzhaniem korunda [Mechanical properties of composite ceramics ZrO2 (CaO) – Al2O3 with different corundum content], 60th International Scientific Conference “Current Problems of Strength”, Vitebsky gosudarstvenny tekhnologichesky universitet, pp. 120–122.

12. Dey, S., Drazin, J.W., Wang, Y., et al., Radiation tolerance of nanocrystalline ceramics: insights from Yttria Stabilized Zirconia, Sci. Rep., 2015, No 6, P. 7746.

13. Pu, G., Zou, J., Lin, L., et al., Effects of He ion irradiation on the microstructures and mechanical properties of t' phase yttria-stabilized zirconia ceramics, Journal of Alloys and Compounds, 2019, V. 771, pp. 777–783.

14. Wang, H., Ren, F., Tang J., et al., Enhanced radiation tolerance of YSZ/Al2O3 multilayered nanofilms with pre-existing nanovoids, Acta Materialia, 2018, V. 144, pp. 691–699.

15. Ohtaki, K.K., Patel, M.K., Crespillo, M.L., et al., Improved high temperature radiation damage tolerance in a three-phase ceramic with heterointerfaces, Sci Rep., 2018, No 8 (1), p. 13993.

16. Belichko, D., Konstantinova, T., Volkova G., et al., Effects of YSZ-ceramics doping with silica and alumina on its structure and properties, Materials Chemistry and Physics., 2022, V. 287, No 1, Art. 126237.

17. Belichko, D.R., Volkova, G.K., Konstantinova, T.E., Maletsky, A.V., Effekt legi-rovaniya keramiki na osnove dioksida tsirkoniya oksidami alyuminiya i kremniya [The effect of alloying ceramics based on zirconium dioxide with aluminum and silicon oxides], FTVD, 2023, V. 33, No 2, pp. 1–10.

18. Gusev, A.I., Nanomaterialy, nanostruktury, nanotekhnologii [Nanomaterials, nanostructures, nanotechnologies], Moscow: Fizmatlit, 2005.

19. Vasiliev, D.M., Difraktsionnye metody issledovaniya struktur [Diffraction methods for studying structures], Moscow: SPbGTU, 1998.

20. Oksengendler, B.L., Ashirmetov, A.H., Iskandarova, F.A., et al., Vzaimodeistvie radiatsionnogo izlucheniya s ierarkhicheskimi strukturami [Interaction of radiation with hierarchical structures], Poverkhnost, rentgenovskie, sinkhrotronnye i neitronnye issledovaniya, 2023, No 1, pp. 37–49.


Review

For citations:


Belichko D.R., Volkova G.K., Maletsky A.V., Isaev R.Sh. Proton irradiation influence on the structure and properties of composite ceramics of the YSZ–SiO2–Al2O3 composition. Voprosy Materialovedeniya. 2024;(3(119)):46-56. (In Russ.) https://doi.org/10.22349/1994-6716-2024-119-3-46-56

Views: 125


ISSN 1994-6716 (Print)