

Synthesis and structure of compounds of the homological series TinO2n–1 obtained by reduction in a hydrogen environment
https://doi.org/10.22349/1994-6716-2024-119-3-57-71
Abstract
The paper considers one of the insufficiently explored methods for the synthesis of compounds of the homologous series TinO2n–1, in particular the method of hydrogen reduction. A series of samples (n = 2–8) were obtained from initial TiO2 powders of various chemical purities (99.0–99.99%) with modification with rutile in a wide range of temperatures and reduction times in a hydrogen environment. The influence of the purity of the initial samples, temperature and recovery time on the structure of the resulting compounds was established. Differences in the crystal structure of compounds of the homologous series TinO2n–1, as well as β- and λ-polymorphic modifications of Ti3O5, are shown. An approach to selecting the temperature and time of reduction of TiO2 powders to obtain a specific phase in compounds of the homologous series TinO2n–1 is substantiated.
Keywords
About the Authors
A. N. KhrustalevRussian Federation
78, bld 4, Vernadsky Ave, 119454 Moscow
L. A. Arbanas
Russian Federation
78, bld 4, Vernadsky Ave, 119454 Moscow
References
1. Cancarevic, M., Zinkevich, M., Aldinger, F., Thermodynamic description of the Ti–O system using the associate model for the liquid phase, Calphad, 2007, V. 31, Is. 3, pp. 330–342. URL: https://doi.org/10.1016/j.calphad.2007.01.009.
2. Varghese, O.K., Gong, D.W., Paulose, M., Ong, K.G., Grimes, C., Extreme Changes in the Electrical Resistance of Titania Nanotubes with Hydrogen Exposure, Advanced Materials, 2003, V. 15, Is. 7–8, pp. 624–627. URL: http://dx.doi.org/10.1002/adma.200304586.
3. Heinlaan, M., Ivask, A., Blinova, I., Dubourguier, H.C., Kahru, A., Toxicity of nanosized and bulk ZnO, CuO and TiO2 to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus, Chemosphere, 2008, No 71, pp. 1308–1316. URL: https://doi.org/10.1016/j.chemosphere.2007.11.047
4. Guezane Lakoud, S., Merabet-Khelassi, M., Aribi-Zouioueche, L., NiSO4·6H2O as a new, efficient, and reusable catalyst for the α-aminophosphonates synthesis under mild and eco-friendly conditions, Res Chem Intermed, 2016, V. 42, pp.4403–4415. URL: https://doi.org/10.1007/s11164-015-2283-z.
5. Chunxiang Cui, Hua Liu, Yanchun Li, Jinbin Sun, Ru Wang, Shuangjin Liu, Lindsay Greer, A., Fabrication and biocompatibility of nano-TiO2/titanium alloys biomaterials, Materials Letters, 2005, V. 59 (24–25), pp. 3144–3148. URL: https://doi.org/10.1016/j.matlet.2005.05.037.
6. Cao, S., Wang, Y., Cao, L., Wang, Y., Lin, B., Lan, W., Cao, B., Preparation and antimicrobial assay of ceramic brackets coated with TiO2 thin films, The Korean Journal of Orthodontics, 2016, V. 46 (3), pp. 146–154. URL: https://doi.org/10.4041/kjod.2016.46.3.146.
7. Solanki, L., Dinesh, S., Jain, R.K., Balasubramaniam, A., Effects of titanium oxide coating on the antimicrobial properties, surface characteristics, and cytotoxicity of orthodontic brackets: A systematic review and meta-analysis of in-vitro studies, Journal of Oral Biology and Craniofacial Research, 2023, No 13, V. 5, pp. 553–562. URL: https://doi.org/10.1016/j.jobcr.2023.05.014.
8. Papk, H.J., Lee, S.E., Papk, J.Y., Optical property of atomically thin titanium-oxide nanosheet for ultraviolet filtration, Thin Solid Films, 2017, V. 636, pp. 99–106. URL: https://doi.org/10.1016/j.tsf.2008.04.039.
9. Luchinsky, G.P., Khimiya titana [Chemistry of titanium], Moscow: Khimiya, 1971.
10. Chen, X., Liu, L., Huang, F., Black titanium dioxide (TiO2) nanomaterials, Chemical Society Reviews, 2015, V. 7, N 44, pp. 1861–1885. URL: https://doi.org/10.1039/C4CS00330F.
11. Liu, Y., Tian, L., Tan, X., Li, X., Chen, X., Synthesis, properties, and applications of black titanium dioxide nanomaterials, Science Bulletin, 2017, V. 6, No 62, pp. 431–441. URL: https://doi.org/10.1016/j.scib.2017.01.034.
12. Thompson, T.L., Yates, J.T., Surface science studies of the photoactivation of TiO2 — new photochemical processes, Chemical reviews, 2006, N 106, V. 10, pp. 4428–4453. URL: https://doi.org/10.1021/cr050172k.
13. Tang, H., et al., Electrical and optical properties of TiO2 anatase thin films, Journal of applied physics, 1994, V. 75, Is. 4, pp. 2042–2047. URL: https://doi.org/10.1063/1.356306.
14. Tang, C., Zhou, D., Zhang, Q., Synthesis and characterization of Magneli phases: Reduction of TiO2 in a decomposed NH3 atmosphere, Materials Letters, 2012, No 79, pp. 42–44. URL: https://doi.org/10.1016/j.matlet.2012.03.095.
15. Smith, J.R., Walsh, F.C., Clae, R.L., Electrodes based on Magnéli phase titanium oxides: the properties and applications of Ebonex materials, Journal of applied electrochemistry, 1998, V. 28, pp. 1021–1033. URL: https://doi.org/10.1023/A:1003469427858.
16. WO2008037941: Simpson, A., Carter, Ph., A Method and apparatus for the manufacture of substoichiometric oxides of titanium by reduction with hydrogen, Publ. 03.04.2008.
17. Gasik, M.I., Lyakishev, N.P., Theory and technology of electrometallurgy of ferroalloys, Moscow: SP Intermet Engineering, 1999, V. 3.
18. Crystal Impact – Software for Chemists and Material Scientists. URL: https://crystalimpact.com/company.htm (reference date: 28/04/23).
19. Meagher, E.P., Lager, G.A., Polyhedral thermal expansion in the TiO2 polymorphs; refinement of the crystal structures of rutile and brookite at high temperature, The Canadian Mineralogist, 1979, V. 1, No 17, pp. 77–85.
20. Newham, R.E., Haan, Y.M., Refinement of the a Al2O3, Ti2O3, V2O3 and Cr2O3 structures, Zeitschrift für Kristallographie-Crystalline Materials, 1962, V. 1–6, No 117, pp. 235–237.
21. Grey, I.E., Madsen, I.C., Watts, A., Bursill, L.A., Kwiatkowska, J., New cesium titanate layer structures, Journal of Solid State Chemistry, 1985, V. 3, No 58, pp. 350–356.
22. Lakkis, S., Schlenker, C., Chakraverty, B.K., Buder, R., Marezio, M., Metal-insulator transitions in Ti4O7 single crystals: Crystal characterization, specific heat, and electron paramagnetic resonance, Physical Review B, 1976, V. 4, No 14, p.1429.
23. Andersson, S., The crystal structure of Ti5O9, Acta chem. scand., 1960, V. 5, No 14, pp. 1161–72.
24. Le Page, Y., Strobel, P., Structural chemistry of Magnéli phases TinO2n−1 (4≤ n≤ 9). I. Cell and structure comparisons, Journal of Solid State Chemistry, 1982, V. 3, No 43, pp. 314–319.
25. ISO 13322-1: Particle size analysis – image analysis methods. Part 1: static image analysis methods. International Organization for Standardization, Geneva, 2004.
26. Horn, M., Schwebdtfeger, C.F., Meagher, E.P., Refinement of the structure of anatase at several temperatures, Zeitschrift für Kristallographie-Crystalline Materials, 1972, V. 1–6, No 136, pp. 273–281.
27. Akimoto, J., Gotoh, Y., Oosawa, Y., Nonose, N., Kumagai, T., Aoki, K., Takei, H., Topotactic oxidation of ramsdellite-type Li0.5TiO2, a new polymorph of titanium dioxide: TiO2 (R), Journal of Solid State Chemistry, 1994, V. 1, No 113, pp. 27–36.
28. Vasilieva, I., Kuzmicheva, G., Pochtar, A., Gainanova, A., Timaev, O., Dorokhov, A., Podbelsky, V., On the nature of the phase “η-TiO2”, New Journal of Chemistry, 2016, V. 1, No 40, pp. 151–161. URL: https://doi.org/10.1039/C5NJ01870F.
29. Li, M., Dai, Y., Pei, X., Chen, W., Hierarchically porous γ-Ti3O5 hollow nanospheres as an effective sulfur host for long-life lithium-sulfur batteries, Applied Surface Science, 2022, V. 579, p. 152178. URL: https://doi.org/10.1016/j.apsusc.2021.152178.
30. Li, X., Liu, Y., Ma, S., Ye, J., Zhang, X., Wang, G., Qiu, Y., The synthesis and gas sensitivity of the β-Ti3O5 powder: experimental and DFT study, Journal of Alloys and Compounds, 2015, V. 649, p. 939–948.
31. Zhao, P.F., Li, G.S., Li, W.L., Cheng, P., Pang, Z.Y., Xiong, X.L., Lu, X.G., Progress in Ti3O5: Synthesis, properties and applications, Transactions of Nonferrous Metals Society of China, 2021, V. 11, No 31, pp. 3310–3327. URL: https://doi.org/10.1016/S1003-6326(21)65731-X.
32. Fu, X., et al., Preparing high purity λ-Ti3O5 and Li/λ-Ti3O5 as high-performance electromagnetic wave absorbers, Journal of Materials Chemistry C, 2021, V. 25, No 9, pp. 7976–7981. URL: https://doi.org/10.1039/D1TC01331A.
33. Cai, R.X., Kubota, Y., Shuin, T., Sakai, H., Hashimoto, K., Fujishima, A., Induction of cytotoxicity by photoexcited TiO2 particles, Cancer research, 1992, V. 52, p. 2346.
34. Song, Y.Y., Schmidt-Stein, F., Bauer, S., Schmuki, P.J., Amphiphilic TiO2 nanotube arrays: an actively controllable drug delivery system, Journal of the American Chemical Society, 2009, V. 131, pp. 4230–4232. URL: https://doi.org/10.1021/ja810130h.
35. Shrestha, N.K., Macak, J.M., Schmidt-Stein, F., Hahn, R., Miepke, C.T., Fabry, B., Schmuki P. Magnetically guided titania nanotubes for site‐selective photocatalysis and drug release, Angewandte Chemie International Edition, Int. Ed., 2009, V. 48, pp. 969–972. URL: https://doi.org/10.1002/anie.200804429.
36. Xinwei, G., Xia, Y., Liang, H., Yao, D., Zeng, Yu-P., Fabrication of high-performance Magnéli phase Ti4O7 ceramics by in-situ hot-pressed sintering in a single step, Materials Today Communications, 2023, V. 37, p. 107058. DOI: 10.1016/j.mtcomm.2023.107058.
37. Padilha, A.C.M., Osorio-Guillén, J.M., Rocha, A.R., Dalpian, G.M., TinO2n−1 Magnéli phases studied using density functional theory, Physical Review B, 2014, V. 3, No 90, p. 035213. URL: https://doi.org/10.1103/PhysRevB.90.035213.
Review
For citations:
Khrustalev A.N., Arbanas L.A. Synthesis and structure of compounds of the homological series TinO2n–1 obtained by reduction in a hydrogen environment. Voprosy Materialovedeniya. 2024;(3(119)):57-71. (In Russ.) https://doi.org/10.22349/1994-6716-2024-119-3-57-71