

Formation of structural-phase state of Ti–Al materials with Hf-additives obtained by hydride technology
https://doi.org/10.22349/1994-6716-2024-119-3-102-111
Abstract
The paper describes the structural and phase composition of TiHf50, AlHf50, TiAl49Hf2 composite materials obtained by the “hydride” technology. A three-component phase diagram for Ti-Al-Hf at 1150°C is constructed. The structural state of TiAl49Hf2 alloys was predicted based on reference lattices found in the USPEX code with the VASP interface; quantum-chemical calculations of the TiAl49Hf2 energy were additionally performed in the CASTEP code. It is shown that solid solutions dominate in the TiAl49Hf2 alloy sample, in which the main elements dominate: Al10 – Ti9Al23 – Ti8. Hf atoms can be introduced into the interstitial sites [-0.257 0.042 0.2545] (St-Hf-27), [0.0053 -0.0120 -0.0765] (St-Hf-143), [0.5 0.5 0.5] (St-Hf). The introduction of hafnium into the specified lattice sites does not violate the stabilizing effect in the TiAl49Hf2 systems. It is shown that the maximum microhardness value (4.9 GPa) was obtained when testing the TiHf50 sample (for comparison: for the TiAl50 system – 1.2 GPa, for the TiAl49Hf2 system – 2.2 GPa).
About the Authors
N. I. KarakchievaRussian Federation
Cand. Sc. (Chem.)
36 Lenin Ave, 634050 Tomsk
1 Lenin Sq, 424000 Yoshkar-Ola, Mari El Republic
Yu. A. Abzaev
Russian Federation
Dr Sc. (Phys.-Math.)
2 Solyanaya Square, 634003 Tomsk
I. V. Amelichkin
Russian Federation
36 Lenin Ave, 634050 Tomsk
I. A. Zhukov
Russian Federation
Dr Sc. (Eng.)
36 Lenin Ave, 634050 Tomsk
V. V. Loskutov
Russian Federation
Cand. Sc. (Phys.-Math.)
1 Lenin Sq, 424000 Yoshkar-Ola, Mari El Republic
A. S. Knyazev
Russian Federation
Dr Sc. (Chem.)
36 Lenin Ave, 634050 Tomsk
V. I. Sachkov
Russian Federation
Dr Sc. (Chem.)
36 Lenin Ave, 634050 Tomsk
I. A. Kurzina
Russian Federation
Dr Sc. (Phys.-Math.)
36 Lenin Ave, 634050 Tomsk
References
1. Gilev, I.O., Shubin, A.B., Kotenkov, P.V., Termodinamicheskie kharakteristiki rasplavov binarnoi sistemy Al–Hf [Thermodynamic characteristics of melts of the Al–Hf binary system], Rasplavy, 2021, No 1, pp. 46–54.
2. Bai, X., Li, Y., Xiao, B., Rao, Y., Liang, H., He, L., Feng, J., Structural, mechanical, electronic properties of refractory Hf–Al intermetallics from SCAN meta-GGA density functional calculations, Materials Chemistry and Physics, 2020, No 254, p. 123423. DOI: 10.1016/j.matchemphys.2020.123423.
3. Skachkov, V.M., Yatsenko, S.P., Pasechnik, L.A., Sabirzyanov, N.A., Poluchenie ligatur Al-Sc, Al-Y, Al-Zr, Al-Hf v rasplave solei i posleduyushchee ikh obogashchenie [Preparation of Al-Sc, Al-Y, Al-Zr, Al-Hf ligatures in molten salts and their subsequent enrichment], Trudy Kolskogo nauchnogo centra RAN, 2018, V. 9, No 2–1, pp. 443–448. DOI: 10.25702/KSC.2307-5252.2018.9.1.443-448.
4. Yukhvid, V.I., Andreev, D.E., Sanin, V.N., Sachkova, N.V., Energeticheskoe stimulirovanie avtovolnovogo sinteza alyuminidov gafniya [Energy stimulation of autowave synthesis of hafnium aluminides], Khimicheskaya fizika, 2017, V. 36, No 9, pp. 40–44. DOI: 10.7868/S0207401X17090163.
5. Zhou, Y.L., Niinomi, M., Akahori, T., Dynamic Young’s Modulus and Mechanical Properties of Ti-Hf Alloys, Materials Transactions, 2004, V. 45, No 5, pp. 1549‒1554.
6. Aleksanyan, A.G., Mailyan, D.G., Dolukhanyan, S.K., Shekhtman, V.Sh., Ter-Galstyan, O.P., Sintez gidridov i poluchenie splavov v sisteme Ti-Hf-H [Synthesis of hydrides and production of alloys in the Ti–Hf–H system], AEE, No 9.
7. Sato, H., Kikuchi, M., Komatsu, M., Okuno, O., Okabe, T., Mechanical properties of cast Ti-Hf alloys, Journal of Biomedical Materials Research. Part B: Applied Biomaterials, 2005, V. 72, No 2, pp. 362–367. DOI: 10.1002/jbm.b.30169.
8. Khlebnikova, Yu.V., Rodionov, D.P., Egorova, L.Yu., Suaridze, T.R., Kristallograficheskie osobennosti struktury α-fazy gafniya i splavov gafny – titan [Crystallographic features of the structure of the α-phase of hafnium and hafnium–titanium alloys], Zhurnal tekhnicheskoi fiziki, 2019, V. 89, No 1. DOI 10.21883/JTF.2019.01.46968.86-18.
9. Kosmachev, P.V., Abzaev, Yu.A., Vlasov, V.A., Quantitative phase analysis of plasma-treated high-silica materials, Russian Physics Journal, 2018, V. 61, No 2.
10. Oganov, A.R., Lyakhov, A.O., Valle, M., How Evolutionary Crystal Structure Prediction Works and Why, Acc. Chem. Res., 2011, V. 44, No 3, pp. 227–237.
11. Oganov, A.R., Glass, C.W., Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, The Journal of chemical physics, 2006, V. 124, No 24.
12. Azhazha, R.V., Kovtun, K.V., Malykhin, S.V., Merisov, B.A., Pugachev, A.T., Reshetnyak, E.N., Hadzhaj, G.Ya., Nakoplenie vodoroda v gafnii: struktura i elektrosoprotivlenie [Hydrogen accumulation in hafnium: structure and electrical resistance], Fizika metallov i metallovedenie, 2008, V. 105, No 2, pp. 201–205.
13. Chen, S., Chen, Z., Wang, J., et al., Insight into the effect of Ti substitutions on the static oxidation behavior of (Hf, Ti)C at 2500°C, Advanced Powder Materials, 2008, V. 3, No 2, p. 100168. DOI: 10.1016/j.apmate.2023.100168.
14. Khlebnikova, Yu.V., Rodionov, D.P., Suaridze, T.R., Egorova, L.Yu., Kazantsev, V.A., Nikolaeva, N.V., EBSD-analiz struktury litykh i zakalennykh splavov gafny – titan [EBSD-analysis of the structure of cast and hardened hafnium–titanium alloys], Fizika metallov i metallovedenie, 2018, V. 119, No 9, pp. 913–922. DOI 10.1134/S0015323018090073.
15. СOD [Electronic resource]: Crystallography Open Database. URL: https://www.crystallography.net/cod/search.html (reference date: 28.03. 2024).
16. OQMD [Electronic resource]: The Open Quantum Materials Database. URL: https://oqmd.org/materials/composition (reference date 28.03.2024).
17. Belgibaeva, А., Abzaev, Yu., Karakchieva, N., Erkasov, R., Sachkov, V., Kurzina, I., The Structural and Phase State of the TiAl System Alloyed with Rare-Earth Metals of the Controlled Composition Synthesized by the “Hydride Technology”, Metals, 2020, V. 10, p. 859. DOI: 10.3390/met10070859.
18. Patent RF 2012128394/02: Vysokotemperaturny gafnysoderzhashchy splav na osnove titana [High-temperature hafnium-containing titanium-based alloy], Popova, E.A., Kotenkov, P.V., Pastukhov, E.A., Bodrova, L.E., 2006.
Review
For citations:
Karakchieva N.I., Abzaev Yu.A., Amelichkin I.V., Zhukov I.A., Loskutov V.V., Knyazev A.S., Sachkov V.I., Kurzina I.A. Formation of structural-phase state of Ti–Al materials with Hf-additives obtained by hydride technology. Voprosy Materialovedeniya. 2024;(3(119)):102-111. (In Russ.) https://doi.org/10.22349/1994-6716-2024-119-3-102-111