Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Formation of structural-phase state of Ti–Al materials with Zr-additives obtained by hydride technology

https://doi.org/10.22349/1994-6716-2024-119-3-112-121

Abstract

The structural and phase composition of TiZr50, AlZr50, TiAl49Zr2 composite materials obtained by the hydride technology was investigated. A model three-component phase diagram was constructed for Ti–Al–Zr at a temperature of 1150°C. The structural state of TiAl49Zr2 alloys was predicted based on reference lattices (USPEX code with VASP interface), quantum-chemical calculations of the energy of TiAl49Zr2 were carried out in the CASTEP code. Solid solutions dominate in TiAl49Zr2, in the composition of which the main elements are predominant: Al10–Ti9Al23–Ti8. Zr atoms can be introduced into the interstitial sites [– 0.257 0.042 0.2545] (St–Zr–27), [0.0053–0.0120–0.0765] (St–Zr–143), [–0.3251–0.3983 0.4880] (St–Zr– 75). The introduction of Zr into the specified lattice sites does not violate the stabilizing effect in the TiAl49Zr2 systems. All reference lattices are stable. In the TiAl49Zr2 alloy, the main phases are Al10Ti9Zr, Al23Ti8Zr, the contributions of which to the theoretical intensity are 78.57 and 21.43%. In the AlZr50 sample, the phases ZrAl, Zr2Al3, ZrAl2.

About the Authors

N. I. Karakchieva
National Research Tomsk State University; Federal State Budgetary Educational Institution of Higher Education “Mari State University”
Russian Federation

Cand. Sc. (Chem)

36 Lenin Ave, 634050 Tomsk

1 Lenin Sq, 424000 Yoshkar-Ola, Mari El Republic



Yu. A. Abzaev
Tomsk State University of Architecture and Civil Engineering”
Russian Federation

Dr Sc. (Phys-Math)

2 Solyanaya Square, 634003 Tomsk



I. V. Amelichkin
National Research Tomsk State University
Russian Federation

36 Lenin Ave, 634050 Tomsk



I. A. Zhukov
National Research Tomsk State University
Russian Federation

Dr Sc. (Eng)

36 Lenin Ave, 634050 Tomsk



A. S. Knyazev
National Research Tomsk State University
Russian Federation

Dr Sc. (Chem)

36 Lenin Ave, 634050 Tomsk



V. I. Sachkov
National Research Tomsk State University
Russian Federation

Dr Sc. (Chem)

36 Lenin Ave, 634050 Tomsk



I. A. Kurzina
National Research Tomsk State University
Russian Federation

Dr. Sc. (Phys-Math)

36 Lenin Ave, 634050 Tomsk



References

1. Ogorodov, D.V., Popov, D.A., Trapeznikov, A.V., Sposoby polucheniya ligatury Al–Zr [Methods for obtaining the Al–Zr ligature]: review, Trudy VIAM, 2015, No 11.

2. Lakshman, S.V., Gibbins, J.D., Wainwright, E.R., Weihs, T.P., The effect of chemical composition and milling conditions on composite microstructure and ignition thresholds of AlZr ball milled powders, Powder Technology, 2019, V. 343, pp. 87–94. DOI: 10.1016/j.powtec.2018.11.012.

3. Muradyan, G.N., Dolukhanyan, S.K., Aleksanyan, A.G., et al., Zakonomernosti i mekhanizm formirovaniya alyuminidov v sisteme TiH2–ZrH2–Al v gidridnom tsikle [Patterns and mechanism of formation of aluminides in the TiH2–ZrH2–Al system in the hydride cycle], Khimicheskaya fizika, 2019, V. 38, No 1, pp. 38–48. DOI: 10.1134/S0207401X19010102.

4. Zhao, Q., Ueno, T., Wakabayashi, N., A review in titanium-zirconium binary alloy for use in dental implants: Is there an ideal Ti-Zr composing ratio, Japanese Dental Science Review, 2023, V. 59, pp. 28–37. DOI: 10.1016/j.jdsr.2023.01.002.

5. Cui, W., Liu, Y., Fatigue behavior of Ti50Zr alloy for dental implant application, Journal of Alloys and Compounds, 2019, V. 793, pp. 212–219. DOI: 10.1016/j.jallcom.2019.04.165.

6. Kosmachev, P.V. Abzaev, Yu.A., Vlasov, V.A., Quantitative phase analysis of plasma-treated high-silica materials, Russian Physics Journal, 2018, V. 61, No 2.

7. Oganov, A.R., Glass, C.W., Crystal structure prediction using ab initio evolutionary techniques: Principles and applications, The Journal of chemical physics, 2006, V. 124, No 24.

8. Oganov, A.R., Lyakhov, A.O., Valle, M., How Evolutionary Crystal Structure Prediction Works and Why, Acc. Chem. Res., 2011, V. 44, No 3, pp. 227–237.

9. Lyakishev, N.P., Diagrammy sostoyaniya dvoinykh metallicheskikh sistem [Diagrams of the state of double metal systems]: reference book, N. P. Lyakishev (Ed.), Moscow: Mashinostroenie, 1996, V. 1, Part 1.

10. Lyakishev, N.P., Diagrammy sostoyaniya dvoinykh metallicheskikh sistem [Diagrams of the state of double metal systems]: reference book, N. P. Lyakishev (Ed.), Moscow: Mashinostroenie, 2000, V. 3, Part 2.

11. Trubitjcy to stratification of the omega phase], Fizika tverdogo tela, 2011, V. 53, No 2, pp. 209–214.

12. СOD [Electronic resource]: Crystallography Open Database. URL: https://www.crystallography.net/cod/search.html (reference date: 28.03. 2024).

13. OQMD [Electronic resource]: The Open Quantum Materials Database. URL: https://oqmd.org/materials/composition (reference date 28.03. 2024).

14. Belgibaeva, A., Abzaev, Y., Karakchieva, N., et al., The structural and phase state of the tial system alloyed with rare-earth metals of the controlled composition synthesized by the “hydride technology”, Metals, 2020, V. 10, No 7, pp. 1–17. DOI: 10.3390/met10070859.

15. Karakchieva, N.I., Abzaev, Yu.A., Knyazev, A.S., et al., Fazovy sostav kompozitsionnykh materialov Ti–Al–Me (Me=Sc, Y, Dy, Ho, Ta), poluchennykh “gidridnoi tekhnologiej" [Phase composition of Ti-Al-Me composite materials (Me=Sc, Y, Dy, Ho, Ta) obtained by hydride technology], Yuzhno-Sibirskij nauchny vestnik, 2022, No 5 (45), pp. 28–33. DOI: 10.25699/SSSB.2022.45.5.006.


Review

For citations:


Karakchieva N.I., Abzaev Yu.A., Amelichkin I.V., Zhukov I.A., Knyazev A.S., Sachkov V.I., Kurzina I.A. Formation of structural-phase state of Ti–Al materials with Zr-additives obtained by hydride technology. Voprosy Materialovedeniya. 2024;(3(119)):112-121. (In Russ.) https://doi.org/10.22349/1994-6716-2024-119-3-112-121

Views: 81


ISSN 1994-6716 (Print)