Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Gibson – Ashby equation for cellular materials based on triply periodic minimal surfaces

https://doi.org/10.22349/1994-6716-2024-119-3-122-132

Abstract

The paper presents experimental data on the physical and mechanical properties of cellular materials with the geometry of triply periodic minimal surfaces (TPMS). It has been established that the dependence of the strength and Young’s modulus on the relative density of materials with the TPMS geometry corresponds to the Gibson – Ashby equation with a fairly high accuracy. Such materials are superior in mechanical properties to classical cellular materials and have high isotropy of mechanical properties.

About the Authors

V. Ya. Shevchenko
NRC “Kurchatov Institute” – CRISM “Prometey”; Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
Russian Federation

Acad. RAS

49 Shpalernaya St, 191015 St Petersburg

2 Makarov Emb., 199034 St Petersburg



A. S. Oryshchenko
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Сorr. member RAS

49 Shpalernaya St, 191015 St Petersburg



S. V. Balabanov
Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
Russian Federation

2 Makarov Emb., 199034 St Petersburg



M. M. Sychev
NRC “Kurchatov Institute” – CRISM “Prometey”; Grebenshchikov Institute of Silicate Chemistry, Russian Academy of Sciences
Russian Federation

49 Shpalernaya St, 191015 St Petersburg

2 Makarov Emb., 199034 St Petersburg



E. A. Pavlova
St Petersburg State Technological Institute (Technical University)
Russian Federation

24/26 Moskovsky Ave, 190013 St Petersburg



References

1. Shevchenko, V.Ya., Kovalchuk, M.V., Oryshchenko, A.S., Sintez novogo klassa materialov s regulyarnoi (periodicheskoi) vzaimosvyazannoi mikrostrukturoj [Synthesis of a new class of materials with a regular (periodic) interconnected microstructure], Fizika i khimiya stekla, 2020, V. 46, No 1, pp. 3–11. DOI: 10.31857/S0132665120010187.

2. Shevchenko, V.Ya., Kovalchuk, M.V., Oryshchenko, A.S., Perevislov, S.N., New chemical technologies based on Turing reaction – diffusion processes, Doklady: Chemistry, 2021, V. 496, No 2, pp. 28–31.

3. Shevchenko, V.Ya., Perevislov, S.N., Ugolkov, V.L., Physicochemical interaction processes in the carbon (diamond) – silicon system, Glass Physics and Chemistry, 2021, V. 47, No 3, pp.197–208.

4. Shevchenko, V.Ya., Sychev, M.M., Lapshin, A.E., et al., Ceramic Materials with the Triply Periodic Minimal Surface for Constructions Functioning under Conditions of Extreme Loads, Glass Phys. Chem., 2017, V. 43, pp. 605–607. URL: https://doi.org/10.1134/S1087659617060153.

5. Shevchenko, V.Ya., Sychev, M.M., Lapshin, A.E., et al., Polymer Structures with the Topology of Triply Periodic Minimal Surfaces, Glass Phys Chem., 2017, V. 43, pp. 608–610. URL: https://doi.org/10.1134/S1087659617060177.

6. Balabanov, S., Makogon, A., Sychov, M., Evstratov, A., Regazzi, A., Lopez-Cuesta, J., 3D-Printing and Mechanical Properties of Polyamide Products with Schwartz Primitive Topology, Technical Physics, 2020, V. 65, pp. 211–215. URL: https://doi.org/10.1134/S1063784220020036.

7. Maskery, I., Sturm, L., Aremu, A.O., Panesar, A., Williams, C.B., Tuck, C.J., Wildman, R.D., Ashcroft, I.A., Hague, R.J., Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing, Polymer, 2018, V. 152, pp. 62–71. URL: https://doi.org/10.1016/j.polymer.2017.11.049.

8. Han Lu, Che Shunai, An Overview of Materials with Triply Periodic Minimal Surfaces and Related Geometry: From Biological Structures to Self-Assembled Systems, Advanced Materials, 2018, V. 30. URL: https://doi.org/1705708. 10.1002/adma.201705708.

9. Xiaocong Tian, Kun Zhou, 3D printing of cellular materials for advanced electrochemical energy storage and conversion, Nanoscale, 2020, V. 12, pp. 7416–7432. URL: https://doi.org/10.1039/D0NR00291G.

10. Alomarah, A., Ruan, D., Masood, S., Gao, Z., Compressive properties of a novel additively manufactured 3D auxetic structure, Smart Materials and Structures, 2019, V. 28. https://doi.org/10.1088/1361-665X/ab0dd6.

11. Yuchu Qin, Qunfen Qi, Paul, J., Scott Xiangqian Jiang. Status, comparison, and future of the representations of additive manufacturing data, Computer-Aided Design, 2019, V. 111, pp.44–64. ISSN 0010-4485, https://doi.org/10.1016/j.cad.2019.02.004.

12. Polymer Data Handbook, Oxford University Press, 1999.

13. Engelberg, I., Kohn, J., Physico-mechanical properties of degradable polymers used in medical applications: a comparative study, Biomaterials, 1991, V. 12(3), pp. 292–304.

14. Dinh, Thi & Trang, Pham & Nguyen, Thom & Thu Phuong, Nguyen & Pham, Thi Nam & Trang, Nguyen & Seo-Park, Jun & Hoang, Thai. Effects of Porogen on Structure and Properties of Poly Lactic Acid/Hydroxyapatite Nanocomposites (PLA/HAp), Journal of Nanoscience and Nanotechnology, 2016, No. 16, pp. 9450-9459. DOI: 10.1166/jnn.2016.12032.

15. Ziomkovskaya, P.E., Gryaznov, A.O., Opredelenie modulya uprugosti ABS i PLA-plastikov, ispolzuemykh v tekhnologiyakh 3D-pechati [Determination of the elastic modulus of ABS and PLA plastics used in 3D printing technologies], Kozubsky, A.M., Nauchnye issledovaniya i razrabotki studentov: materialy IV Mezhdunar. studench. nauch.-prakt. konf., Cheboksary: Interaktiv plus, 2016, pp. 166–169.

16. Arsentiev, M.Yu., Balabanov, S.V., Sychev, M.M., Dolgin, D.S., Crystalline Design of Cellular Materials, Glass Physics and Chemistry, 2020, V. 46, No. 6, pp. 638–641.

17. GOST 4651-2014 (ISO 604:2002): Plastmassy. Metod ispytaniya na szhatie, Standartinform, 2014.

18. Gibson, L.J., Ashby, M.F., The Mechanics of Three-Dimensional Cellular Materials, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1982, V. 382, No 1782, The Royal Society, pp. 43–59. URL: http://www.jstor.org/stable/2397268.

19. Abou-Ali, A.M., Lee, D.-W., Abu Al-Rub, R.K., On the Effect of Lattice Topology on Mechanical Properties of SLS Additively Manufactured Sheet-, Ligament-, and Strut-Based Polymeric Metamaterials, Polymers, 2022, V. 14, Is. 21, p. 4583. URL: https://doi.org/10.3390/polym14214583.

20. Ghaemi Khiavi, S., Mohammad Sadeghi, B., Divandari, M., Effect of topology on strength and energy absorption of PA12 non-auxetic strut-based lattice structures, Journal of Materials Research and Technology, 2022, October, pp. 1595–1613. URL: https://doi.org/10.1016/j.jmrt.2022.09.116.

21. Zhonggang, W., Jiefu, L., David, H., Mechanical behaviors of inclined cell honeycomb structure subjected to compression, Composites, Part B: Engineering, 2017, V. 110, pp. 307–314. ISSN 1359-8368. https://doi.org/10.1016/j.compositesb.2016.10.062.


Review

For citations:


Shevchenko V.Ya., Oryshchenko A.S., Balabanov S.V., Sychev M.M., Pavlova E.A. Gibson – Ashby equation for cellular materials based on triply periodic minimal surfaces. Voprosy Materialovedeniya. 2024;(3(119)):122-132. (In Russ.) https://doi.org/10.22349/1994-6716-2024-119-3-122-132

Views: 150


ISSN 1994-6716 (Print)