Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

On the analysis of physical properties of thermal interfaces based on hexagonal boron nitride and copper

https://doi.org/10.22349/1994-6716-2024-119-3-133-144

Abstract

The physical properties (thermal and thermal diffusivity) of thermal interfaces based on powdered boron nitride with a hexagonal crystal lattice (h-BN) and copper with a cubic crystal lattice (Cu) for cooling the electronic component base of micro- and nanoelectronics are studied. The physical properties are determined by the flash method. The prospects of using pressed hexagonal boron nitride powder as a thermal interface without using a binder are described. A comparison with the physical properties of other thermal interfaces that are widely used at present is made.

About the Authors

D. A. Prokhorov
MIREA – Russian Technological University; Federal State Unitary Enterprise “NAMI”
Russian Federation

78 Vernadskogo Ave, 119454, Moscow

2 St Avtomotornaya 125438, Moscow



S. M. Zuev
MIREA – Russian Technological University; Federal State Unitary Enterprise “NAMI”
Russian Federation

78 Vernadskogo Ave, 119454, Moscow

2 St Avtomotornaya 125438, Moscow



References

1. Donghua, L., Xiaosong, Ch., Yaping, Y., et al., Conformal hexagonal-boron nitride dielectric interface for tungsten diselenide devices with improved mobility and thermal dissipation, Nature Communications, 2019, No 10, Art. 1188.

2. Sarkarat, M., Lanagan, M., Ghosh, D., Lottes, A., Budd, K., Rajagopalan, R., Improved thermal conductivity and AC dielectric breakdown strength of silicone rubber/BN composites, Composites. Part C: Open Access, Elsevier Ltd., 2020, V. 2, Art. 100023.

3. Solozhenko, V.L., Lazarenko, A.G., Petitet, J.-P., Kanaev, A.V., Bandgap energy of graphite-like hexagonal boron nitride, Journal of Physics and Chemistry of Solids, 2001, No 62.

4. Yu, S., Kaviany, M., Electrical, thermal, and species transport properties of liquid eutectic Ga-In and Ga-In-Sn from first principles, The Journal of Chemical Physics, AIP Publishing LLC, 2014, V. 140, pp. 1–8.

5. Martin, R.L., Kok, J.F., Wind-invariant saltation heights imply linear scaling of aeolian saltation flux with shear stress, Science Advances, 2017, V. 3, Is. 6.

6. Zuev, S.M., Prokhorov, D.A., Investigation of the Characteristics of a Graphene-Based Thermal Interface for Cooling Integrated Circuits, Protection of metals and physical chemistry of surfaces, 2023, V. 59, No 2, pp. 1–8.

7. Landau, L.D., Lifshits, E.M., Gidrodinamika [Hydrodynamics], Moscow: Nauka, 1986.

8. Rid, R., Shervud, T., Svoistva gazov i zhidkostei (opredelenie i korrelyatsiya) [Properties of gases and liquids (definition and correlation)], Leningrad: Khimiya, 1971.

9. Svidetelstvo ob utverzhdenii tipa sredstv izmerenii No 82575-21: Opisanie tipa sredstva izmerenii. Difraktometry rentgenovskie modeli DRON-8N i DRON-8T [Description of the type of measuring instrument. Diffractometers X-ray models DRON-8H and DRON-8T], VNIIM im. D.I. Mendeleeva, 2023.

10. Alam, K., Open air X-ray diffractometer for crystallography, compression, contraction, and structural phase transitions with variable temperature capabilities, Methods X, 2024, V. 12. DOI: https://doi.org/10.1016/j.mex.2024.102703.

11. Svidetelstvo ob utverzhdenii tipa sredstv izmereny, No 57491-14: Opisanie tipa sredstva izmereny. Izmeriteli teplofizicheskikh parametrov modifikatsii LFA 467 HyperFlash [Description of the type of measuring instrument. Thermophysical parameters of the measuring instrument LFA 467 HyperFlash modification], VNIIM im. D.I. Mendeleeva, 2022.

12. Bachmann, J., Gleis, E., Schmölzer, S., Fruhmann, G., Hinrichsen, O., Photo-DSC method for liquid samples used in vat photopolymerization, Analytica Chimica Acta, 2021, V. 1153. DOI: https://doi.org/10.1016/j.aca.2021.338268.

13. Svidetelstvo ob utverzhdenii tipa sredstv izmerenij No 54912-13: Opisanie tipa sredstva izmerenij. Kalorimetry differencialnye skaniruyushchie modifikacij DSC 200 F3, DSC 204 F1, DSC 204 HP, DSC 404 C, DSC 404 F1, DSC 404 F3 [Description of the type of measuring instrument. Differential scanning calorimeters of the DSC 200 F3, DSC 204 F1, DSC 204 HP, DSC 404 C, DSC 404 F1, DSC 404 F3 modifications], VNIIM im. D.I. Mendeleeva, 2023.

14. Sakthi Balan, G., Mohana Krishnan, A., Saravanavel, S., Ravichandran, M., Investigation of hardness characteristics of waste plastics and egg shell powder reinforced polymer composite by stirring route, Materials Today: Proceedings, 2020, V. 33(7), pp. 4090–4093. DOI: https://doi.org/10.1016/j.matpr.2020.06.545.

15. Prokhorov, D.A., Zuev, S.M., Issledovanie harakteristik termointerfejsa na osnove grafena dlya ohlazhdeniya integral'nyh mikroskhem [Investigation of the characteristics of a graphene-based thermal interface for cooling integrated circuits], Fizikokhimiya poverkhnosti i zashchita materialov, 2023, V.59, No 2, pp. 167–174.

16. Zuev, S.M., Kretushev, A.V., Issledovanie mikrostruktury lyuminoforov dlya lazernykh osvetitelnykh ustroistv [Investigation of the microstructure of phosphors for laser lighting devices], Optika i spektroskopiya, 2023, V. 131, Is. 3, pp. 370–379.


Review

For citations:


Prokhorov D.A., Zuev S.M. On the analysis of physical properties of thermal interfaces based on hexagonal boron nitride and copper. Voprosy Materialovedeniya. 2024;(3(119)):133-144. (In Russ.) https://doi.org/10.22349/1994-6716-2024-119-3-133-144

Views: 96


ISSN 1994-6716 (Print)