Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Plastic strain effect on cleavage microcracks propagation in probabalistic statement. Part 1. Formulation of the problem and research methods

https://doi.org/10.22349/1994-6716-2024-119-3-153-168

Abstract

The first part considers the main physical and mechanical processes occurring under tension of round bars. The procedure is presented that allows one to describe the plastic strain effect on the critical brittle fracture stress in probabilistic statement. The main statements of Prometey model for prediction of fracture stress are also presented. The investigations are carried out for two materials: 2Cr–Ni–Mo–V steel used for WWER-1000 RPV in the thermally-embrittled state and low-alloyed low-strength steel of St3 grade taken as model material ruptured by cleavage up to plastic strain up to 50%.

About the Authors

B. Z. Margolin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



V. N. Fomenko
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



V. A. Shvetsova
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Phys-math)

49 Shpalernaya St, 191015 St Petersburg



F. L. Shishkov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



E. V. Yurchenko
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



References

1. Pisarenko, G.S., Krasowsky, A.J., Analysis of kinetics of quasibrittle fracture of crystalline materials, Mechanical Behaviour of Materials. Proc. Int. Conf. Mech. Behav. Mater., Kyoto, 1972, V. 1, pp. 421–432.

2. Ritchie, R.O., Knott, J.F., Rice, J.R., On the relation between critical tensile stress and fracture toughness in mild steel, J. Mech. Phys. Solids, 1973, V. 21, pp. 395–410.

3. Beremin, F.M., A local criterion for cleavage fracture of a nuclear pressure vessel steel, Metall Trans A, 1983, V. 14, pp. 2277–2287.

4. Mudry, F., A local approach to cleavage fracture, Nuclear Engineering and Design, 1987, V. 105, pp. 65–76.

5. Margolin, B.Z., Shvetsova, V.A., Local criterion for cleavage fracture: structural and mechanical approach, J Phys. IV, 1996, V. 6, No C6, pp. 225–234.

6. Margolin, B.Z., Shvetsova, V.A., Karzov, G.P., Brittle fracture of nuclear pressure vessel steels. I. Local criterion for cleavage fracture, Int. J. Pres. Ves. & Piping, 1997, V. 72, pp. 73–87.

7. Lefevre, W., Barbier, G., Masson, R., Rousselier, G., A modified Beremin model to simulate the warm pre-stress effect, Nuclear Eng. and Design, 2002, V. 216, pp. 27–42.

8. Bordet, S.R., Karstensen, A.D., Knowles, D.M., Wiesner, C.S., A new statistical local criterion for cleavage fracture in steel, Eng.Fract.Mech., 2005, V. 72, pp. 435–474.

9. Pineau, A., Development of the local approach to fracture over the past 25 years: theory and applications, Carpinteri, A., Mai, Y-W., Ritchie, R. (Eds.), Honour and Plenary Lectures Presented at the 11th International Conference on Fracture (ICF11), Springer, 2006, pp. 139–166.

10. Tanguy, B., Bouchet, C., Bordet, S.R., Besson, J., Pineau, A., Toward a better understanding of a cleavage in RPV-steels: Local mechanical conditions and evaluation of a nucleation enriched Weibull model and of the Beremin model over large temperature range, EUROMECH-MECAMAT: 9th European Mechanics of Materials Conference Local Approach to Fracture, Besson, J., Moinerau, D., Steglich, D. (Eds.), Mines, 2006, pp. 129–134.

11. Meshkov, Yu.Ya., Fizicheskie osnovy razrusheniya stalnykh konstruktsy [The physical basis of the destruction of steel structures], Kiev: Naukova Dumka, 1981.

12. Di Fant, M., Carius, H., Carollo, G., Cleizergues, O., Le Cog, V., Mudry, F., Local approach to brittle fracture: Discussion on the effects of temperature and strain on the critical cleavage stress, 2nd Griffiths Conf. on Mechanisms of Fracture and their Structural Significance, Sheffield, 13–15 Sept., 1995.

13. Margolin, B.Z., Fomenko, V.N., Gulenko, A.G., Kostylev, V.I., Shvetsova, V.A., Dalneishee razvitie modeli Prometej i metoda Unified Curve. Chast 1. Razvitie modeli Prometey [Further development of the Prometey model and the Unified Curve method. Part 1. Development of the Prometey model], Voprosy Materialovedeniya, 2016, No 4 (88), pp. 120–150.

14. Ludwik, R., Elemente der technologischen Mechanik, Berlin, 1909.

15. Ioffe, A.F., Kirpicheva, M,V., Levitskaya, M.A., Deformatsiya i prochnost kristallov [Deformation and strength of crystals], Zhurn. Russk. fiz.-khim. obshchestva, chast fiz., 1924, V. 56, pp. 489–504.

16. Davydenkov, N.N., Dinamicheskie ispytaniya materialov [Dynamic testing of materials], Moscow: ONTI, 1936.

17. Fridman, Ya.B., Mekhanicheskie svoistva metallov [Mechanical properties of metals], Moscow: Oborongiz, 1952.

18. Knott, J.F., Fundamentals of Fracture Mechanics, London: Butterworths, 1973.

19. Hahn, G.T., Averbach, B.L., Owen, W.S., Cohen, M., Initiation of cleavage microcracks in polycrystalline iron and steel. Fracture, Averbach, B.L., et al. (Eds.), MIT Press Cambridge, MA, Wiley, New York, 1959, pp. 91–116.

20. Kopelman, L.A., Soprotivlyaemost svarnykh uzlov khrupkomu razrusheniyu [Resistance of welded joints to brittle fracture], Leningrad: Mashinostroenie, 1978.

21. Margolin, B.Z., Fomenko, V.N., Shvetsova, V.A., Yurchenko, E.V., Radiatsionnoe i termicheskoe okhrupchivanie korpusnykh reaktornykh stalei: svyaz mekhanizmov okhrupchivaniya i razrusheniya s kharakteristikami zarozhdeniya i rasprostraneniya mikrotreshchin. Ch. 1: Strategiya, programma i metody eksperimentalnykh i raschetnykh issledovany [Radiation and thermal embrittlement of reactor vessel steels: the relationship of embrittlement and fracture mechanisms with the characteristics of the origin and propagation of microcracks. Part 1: Strategy, program and methods of experimental and computational research], Voprosy Materialovedeniya, 2024, No 1 (117), pp.173–194.

22. Margolin, B.Z., Fomenko, V.N., Shvetsova, V.A., Yurchenko, E.V., Radiatsionnoe i termicheskoe okhrupchivanie korpusnykh reaktornykh stalei: svyaz mekhanizmov okhrupchivaniya i razrusheniya s kharakteristikami zarozhdeniya i rasprostraneniya mikrotreshchin. Ch. 2. Kharakteristiki prochnosti i plastichnosti [Radiation and thermal embrittlement of reactor vessel steels: the relationship of embrittlement and fracture mechanisms with the characteristics of the origin and propagation of microcracks. Part 2. Strength and ductility characteristics], Voprosy Materialovedeniya, 2024, No 1 (117), pp. 195–209.

23. Margolin, B.Z., Fomenko, V.N., Shvetsova, V.A., Yurchenko, E.V., Radiatsionnoe i termicheskoe okhrupchivanie korpusnykh reaktornykh stalei: svyaz mekhanizmov okhrupchivaniya i razrusheniya s kharakteristikami zarozhdeniya i rasprostraneniya mikrotreshchin. Ch. 3. Modelirovanie khrupkogo razrusheniya i analiz svyazi kharakteristik zarozhdeniya i rasprostraneniya mikrotreshchin s mekhanizmami okhrupchivaniya [Radiation and thermal embrittlement of reactor vessel steels: the relationship of embrittlement and fracture mechanisms with the characteristics of the origin and propagation of microcracks. Part 3. Modeling of brittle fracture and analysis of the relationship between the characteristics of the origin and propagation of microcracks with embrittlement mechanisms], Voprosy Materialovedeniya, 2024, No 2 (118), pp. 166–186

24. Parrot, A., Dahl, A., Forget, P, Marini, B., Evaluation of fracture toughness from instrumented Charpy impact tests for a reactor pressure vessel steel using local approach to fracture, Besson, J., Moinerau, D., Steglich, D. (Eds.), EUROMECH-MECAMAT 2006: local approach to fracture, Mines, 2006, pp. 291–296.

25. Rybijruction of metals], Moscow: Metallurgiya, 1986.

26. Karzov, G.P., Margolin, B.Z., Shvetsova, V.A., Fiziko-mekhanicheskoe modelirovanie protsessov razrusheniya [Physical and mechanical modeling of fracture processes], St Petersburg: Politekhnika, 1993.

27. Margolin, B.Z., Shvetsova, V.A., Gulenko, A.G., Kostylev, V.I., Application of a new cleavage fracture criterion for fracture toughness prediction for RPV steels, Fatigue Fract. Engng. Mater. Struct., 2006, No 29 (9), pp. 697–713.

28. Weibull, W.A., A statistical theory of the strength of materials, Roy Swed Inst Eng Res., 1939, V. 151, pp. 5–45.


Review

For citations:


Margolin B.Z., Fomenko V.N., Shvetsova V.A., Shishkov F.L., Yurchenko E.V. Plastic strain effect on cleavage microcracks propagation in probabalistic statement. Part 1. Formulation of the problem and research methods. Voprosy Materialovedeniya. 2024;(3(119)):153-168. (In Russ.) https://doi.org/10.22349/1994-6716-2024-119-3-153-168

Views: 62


ISSN 1994-6716 (Print)