Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Structural-phase changes in high-speed steel surfacing during tempering and electron beam treatment

https://doi.org/10.22349/1994-6716-2024-120-4-5-16

Abstract

Studying the structure and phase composition of high-speed steel R2M9 surfacing of medium-carbon steel 30KhGSA, transmission and scanning electron microscopy, X-ray phase and X-ray structural analysis were used. Heat treatment included three-fold high-temperature tempering with subsequent irradiation with pulsed electron beams. The solid solution based on α-iron is the main phase in the initial state and after heat treatment; the γ-phase is present in a small amount (3–5 mas.%). The lattice parameter of both phases decreases after tempering. Irradiation of the deposited layer with electron beams is accompanied by an increase in the crystal lattice parameter of the α-phase and its decrease for the γ-phase. The paper discusses reasons of the observed patterns. It has been established that the deposited layer is characterized by the presence of a carbide frame containing carbides of complex composition MeC, Me6C, Me23C6, Me7C3, which is not destroyed after tempering and electron beam treatment. Carbide of composition Me6C is the main phase forming the frame, and MeC is formed after tempering and electron beam treatment. The martensitic structure formed during surfacing contains nanosized inclusions of the second phase of the composition MoC, Mo2C, Me6C with a size of 20–45 nm, located in the martensite plates’ volume and along the boundaries. Their volume fraction decreases to 19 mas.% after tempering and additional irradiation with electron beams.

About the Authors

Yu. F. Ivanov
Institute of High Current Electronics SB RAS
Russian Federation

Dr Sc. (Phys-Math).

2/3 Akademichesky Ave., 634055 Tomsk



V. E. Gromov
Siberian State Industrial University
Russian Federation

Dr Sc. (Phys-Math).

42 Kirov St, 654007 Novokuznetsk



A. B. Yuriev
Siberian State Industrial University
Russian Federation

Dr Sc. (Eng).

42 Kirov St, 654007 Novokuznetsk



S. S. Minenko
Siberian State Industrial University
Russian Federation

42 Kirov St, 654007 Novokuznetsk



A. S. Chapaikin
Siberian State Industrial University
Russian Federation

42 Kirov St, 654007 Novokuznetsk



I. Yu. Litovchenko
Institute of Physics of Strength and Materials Science SB RAS
Russian Federation

Dr Sc. (Phys-Math).

2/4 Akademichesky Ave., 634055 Tomsk



A. P. Semin
Siberian State Industrial University
Russian Federation

Cand Sc. (Eng).

42 Kirov St, 654007 Novokuznetsk



References

1. Gromov, V.E., Chapaikin, A.S., Nevsky, S.A., Struktura, svoistva i modeli bystrorezhushchei stali posle otpuska i elektronno-puchkovoi obrabotki [Structure, properties and models of high-speed steel after tempering and electron beam processing], Novokuznetsk: Polygraphist, 2024.

2. Ivanov, Yu.F., Gromov, V.E., Potekaev, A.I., Guseva, T.P., Chapaikin, A.S., Vashchuk, E.S., Structure and properties of R18U high-speed steel surfacing after its high tempering, Russian Physics Journal, 2023, V. 66, No 7, pp. 731–739. DOI: 10.1007/s11182-023-02999-w

3. Rakhadilov, B.K., Zhurerova, L.G., Scheffler, M., Khassenov, A.K., Change in high temperature wear resistance of high speed steel by plasma nitriding, Bulletin of the Karaganda University. Physics Series, 2018, No 3 (91), pp. 59–65.

4. Rakhadilov, B.K., Wieleba, W., Kylyshkanov, M.K., Kenesbekov, A.B., Maulet, M., Structure and phase composition of high-speed steels, Bulletin of the Karaganda University. Physics Series, 2020, No 2 (98), pp. 83–92.

5. Barchukov, D.A., Tsygvintsev, A. V. , Afanasieva, L.E., Osobennosti formirovaniya struktury i svoistv bystrorezhushchei stali pri impulsno-dugovoi naplavke [Features of the formation of the structure and properties of high-speed steel during impulse-arc surfacing], Vestnik Tverskogo gosudarstvennogo tekhnicheskogo universiteta: Ser. Tekhnicheskie nauki, 2019, No 4 (4), pp. 16–21.

6. Mozgovoy, I. V. , Shneider, E.A., Naplavka bystrorezhushchei stali [Surfacing of high-speed steel], Omsk: OmGTU, 2016.

7. Wu, W. , Chen, W. , Yang, S., Lin, Y. , Zhang, S., Cho, T.Y. , Lee, G.H., Kwon, S.-Ch., Design of AlCrSiN multilayers and nanocomposite coating for HSS cutting tools, Appl. Surf. Sci., 2015, V. 351, pp. 803–810.

8. Cho, I.S., Amanov, A., Kim, J.D., The effects of AlCrN coating, surface modification and their combination on the tribological properties of high speed steel under dry conditions, Tribol. Int., 2015, V. 81, pp. 61–72.

9. Kottfer, D., Ferdinandy, M., Kaczmarek, L., Maňková. I., Beňo, J., Investigation of Ti and Cr based PVD coatings deposited onto HSS Co 5 twist drills, Appl. Surf. Sci., 2013, V. 282, pp. 770–776.

10. Gerth, J., Wiklund, U., The influence of metallic interlayers on the adhesion of PVD TiN coatings on high-speed steel, Wear, 2008, V. 264, pp. 885–892.

11. Chaus, A.S., Rudnitsky, F.I., Structure and Properties of Cast Rapidly Cooled High-Speed Steel R6M5, Metal Science and Heat Treatment, 2003, V. 45, pp. 157–162.

12. Nefediev, S.P., Emeliushin, A.N., Plazmennoe uprochnenie poverkhnosti [Plasma surface hardening], Stary Oskol: TNT, 2021.

13. Geller, Yu.A., Instrumentalnye stali [Tool steels], Moscow: Metallurgiya, 1983.

14. Colaço, R., Gordo, E., Ruiz-Navas, E.M., Otasevic, M., Vilar, R., A comparative study of the wear behavior of sintered and laser surface melted AISI M42 high speed steel diluted with iron, Wear, 2006, V. 260, pp. 949–956.

15. Kąc, S., Kusiński, J., SEM and TEM microstructural investigation of high-speed tool steel after laser melting, Mater. Chem. Phys., 2003, V. 81, pp. 510–512.

16. Ivanov, Yu.F., Gromov, V.E., Potekaev, A.I., Chapaikin, A.S., Semin, A.P., Guseva, T.P., Electron microscopy of high-speed steel/30HGSA steel interface, Russian Physics Journal, 2024, V. 67, No 1. pp. 24–33.

17. Malushin, N.N., Valuev, D. V. , Obespechenie kachestva detalei metallurgicheskogo oborudovaniya na vsekh etapakh ikh zhiznennogo tsikla putem primeneniya plazmennoi naplavki teplostoikimi staliami [Ensuring the quality of metallurgical equipment parts at all stages of their life cycle through the use of plasma surfacing with heat-resistant steels], Tomsk: NTL, 2013.

18. Malushin, N.N., Tekhnologii naplavki detalei gorno-metallurgicheskogo kompleksa teplostoikimi stalyami vysokoi tverdosti [Technologies for surfacing parts of the mining and metallurgical complex with heat-resistant steels of high hardness], Valuev, D.V., Osetkovsky, V.L., Solodsky, S.A. (Eds.), Tomsk: TPU, 2015.

19. Nefediev, S.P., Emelyushin, A.N., Vliyanie azota na formirovanie struktury i svoistv plazmennykh pokryty tipa 10R6M5 [The influence of nitrogen on the formation of the structure and properties of plasma coatings of type 10Р6М5], Vestnik Yugorskogo gosudarstvennogo universiteta, 2021, Is. 3 (62), pp. 33–45.

20. Pochetukha, V. V. , Baschenko, L.P., Gostevskaya, A.N., Budovskikh, E.A., Gromov, V.E., Chapaikin, A.S., Struktura i svoistva plazmennykh pokryty iz bystrorezhushchei stali posle vysoko-temperaturnogo otpuska [Structure and properties of plasma coatings made of high-speed steel after high-temperature tempering], Vestnik Sibirskogo gosudarstvennogo industrialnogo universiteta, 2023, No 3 (45), pp. 30–38. URL: http://doi.org/10.57070/2304-4497-2023-3(45)-30-38

21. Gromov, V.E., Kobzareva, T.Yu., Ivanov, Yu.F., Budovskikh, E.A., Bashchenko, L.P., Surface Modification of Ti Alloy by Electro-explosive Alloying and Electron-Beam Treatment, AIP Conference Proceedings, 2016, V. 1698, No 030006.

22. Gromov, V.E., Ivanov, Yu.F., Glezer, A.M., Kormyshev, V.E., Konovalov, S. V. , Electron-Beam Modification of a Surface Layer Deposited on Low-Carbon Steel by Means of Arc Spraying, Bulletin of the Russian Academy of Sciences: Physics, 2017, V. 81, No 1, pp. 1353–1359.

23. Evoliutsiya struktury poverkhnostnogo sloya stali, podvergnutoi elektronno-ionno-plazmennoi obrabotke [Evolution of the structure of the surface layer of steel subjected to electron-ion-plasma treatment], Koval, N.N., Ivanov, Yu.F. (Eds.), Tomsk: NTL, 2016.

24. Egerton, F.R., Physical Principles of Electron Microscopy, Basel: Springer International Publishing, 2016.

25. Kumar, C.S.S.R., Transmission Electron Microscopy. Characterization of Nanomaterials, New York: Springer, 2014.

26. Carter, C.B., Williams, D.B., Transmission Electron Microscopy, Berlin: Springer International Publishing, 2016.


Review

For citations:


Ivanov Yu.F., Gromov V.E., Yuriev A.B., Minenko S.S., Chapaikin A.S., Litovchenko I.Yu., Semin A.P. Structural-phase changes in high-speed steel surfacing during tempering and electron beam treatment. Voprosy Materialovedeniya. 2024;(4(120)):5-16. (In Russ.) https://doi.org/10.22349/1994-6716-2024-120-4-5-16

Views: 84


ISSN 1994-6716 (Print)