Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Thermoelectric properties of an alloy based on the Al–Mn–Si system, produced by SHS pressing

https://doi.org/10.22349/1994-6716-2024-120-4-37-45

Abstract

A thermoelectric alloy containing the Mn5 (Si2.5Al0.5) phase was obtained for the first time using self-propagating high-temperature synthesis combined with pressing. The microstructure of the alloy is represented by grains up to 10 μm in size. X-ray phase analysis showed the presence of the following phases in the synthesized sample: Mn5 (Si2.5Al0.5), TiC and SiO2. The presence of the TiC and SiO2 phases is due to the specific features of the sample synthesis using the SHS pressing method. A study of the thermoelectric characteristics of the material was conducted. The value of the Seebeck coefficient (S) at room temperature is about 8 μV/K and reaches a wide maximum of 9–10 μV/K at T = 360 K, and the maximum value of specific electrical resistance of 1.5∙10-2 Ohm∙cm is achieved at room temperature.

About the Authors

A. O. Sivakova
Merzhanov Institute of Structural Macrokinetics and Materials Science of the RAS
Russian Federation

8 Academician Osipyan Street, 142432 Moscow Region, Chernogolovka



I. E. Semenchuk
Merzhanov Institute of Structural Macrokinetics and Materials Science of the RAS
Russian Federation

8 Academician Osipyan Street, 142432 Moscow Region, Chernogolovka



A. V. Karpov
Merzhanov Institute of Structural Macrokinetics and Materials Science of the RAS
Russian Federation

8 Academician Osipyan Street, 142432 Moscow Region, Chernogolovka



A. E. Sychev
Merzhanov Institute of Structural Macrokinetics and Materials Science of the RAS
Russian Federation

Cand. Sc. (Eng).

8 Academician Osipyan Street, 142432 Moscow Region, Chernogolovka



References

1. Skokov, K.P., Gutfleisch, O., Heavy rare earth free, free rare earth and rare earth free magnets − Vision and reality, Scr. Mater., 2018, V. 154, pp. 289–294. URL: https://doi.org/10.1016/j.scriptamat.2018.01.032

2. Berkowitz, A.E., Livingston, J.D., Walter, J.L., Properties of Mn-Al-C magnets prepared by spark erosion and other rapid solidification techniques, J. Appl. Phys., 1984, V. 55, pp. 2106–2108. URL: https://doi.org/10.1063/1.333579

3. Chaturvedi, A., Yaqub, R., Baker, I., Microstructure and magnetic properties of bulk nanocrystalline MnAl, Metals, 2014, V. 4, pp. 20–27. URL: https://doi.org/10.3390/met4010020

4. Jian, H., Skokov, K.P., Gutfleisch, O., Microstructure and magnetic properties of MnAl-C alloy powders prepared by ball milling, J. Alloys Compd., 2015, V. 622, pp. 524–528. URL: https://doi.org/10.1016/j.jallcom.2014.10.138

5. Bittner, F., Freudenberger, J., Schultz, L., Woodcock, T.G., The impact of dislocations on coercivity in L10-MnAl, J. Alloys Compd., 2017, V. 704, pp. 528–536. URL: https://doi.org/10.1063/1.5130064

6. Thielsch, J., Bittner, F. , Woodcock T.G., Magnetization reversal processes in hot-extruded τ-MnAl-C, J. Magn. Magn. Mater., 2017, V. 426, pp. 25–31. DOI:10.1016/j.jmmm.2016.11.045

7. Bance, S., Bittner, F. , Woodcock, T.G., Schultz, L., Schrefl, T. , Role of twin and anti-phase defects in MnAl permanent magnets., Acta Mater., 2017, V. 131, pp. 48–56. https://doi.org/10.1016/j.actamat.2017.04.004

8. Bittner, F. , Schultz, L., Woodcock, T.G., The role of the interface distribution in the decomposition of metastable L10-Mn54Al46, J. Alloys Compd., 2017, V. 727, pp. 1095–1099. https://doi.org/10.1016/j.jallcom.2017.08.197

9. Madugundo, R., Hadjipanayis, G.C., Anisotropic Mn-Al-(C) hot-deformed bulk magnets, J. Appl. Phys., 2016, V. 119, p. 013904. URL: https://doi.org/10.1063/1.4939578

10. Levashov, E.A., Bogatov, Y. V. , Rogachev, A.S., Pityulin, A.N., Borovinskaya, I.P., Merzhanov, A.G., Specific features of structure formation of synthetic hard tool materials in the SHS compacting process, J. Eng. Phys. and Thermophys., 1992, V. 63, pp. 1091–1105. URL: https://doi.org/10.1007/BF00853505

11. Leskovar, B., Samardžija, Z., Koblar, M., et al., Development of an Al-Mn-Si-Based Alloy with an Improved Quasicrystalline-Forming Ability, JOM, 2020, V. 72, pp. 1533–1539. https://doi.org/10.1007/s11837-019-03702-6

12. Friesa, S.G., Jantzen, T. , Compilation of CALPHAD formation enthalpy data. Binary intermetallic compounds in the COST 507 Gibbsian database, Thermochimica Acta, 1998, V. 314, pp. 23–33. URL: https://doi.org/10.1016/S0040-6031(97)00478-4

13. Sivakova, A.O., Lazarev, P.A., Boyarchenko, O.D., Sychev, A.E., Sychev, G.A., Osobennosti formirovaniya γ -fazy Al9Mn3Si v usloviyakh vysokotemperaturnogo sinteza v sisteme Al-Mn-Si: gorenie, strukturoi fazoobrazovanie [Features of the formation of the Al9Mn3Si-phase under conditions of hightemperature synthesis in the Al-Mn-Si system: gorenie, structuroand phase formation], FGV, 2024, No 5. DOI: 10.15372/FGV2023.9355

14. Shcherbakov, V.A., Gryadunov, A.N., Alymov, M.I., Synthesis and Characteristics of the B4C–ZrB2 Composites, Lett. Mater., 2017, No 7 (4), pp. 398–401. URL: https://doi.org/10.22226/2410-3535-2017-4-398-40115

15. Prince, A., M aterials Science International Team, Isothermal section at 950°C: Datasheet from MSI Eureka, SpringerMaterials, URL: https://materials.springer.com/msi/phase-diagram/docs/sm_msi_r_10_014597_01_full_LnkDia1 (reference date 21/11/2024)

16. Belov, N.A., Eskin D.G., Aksenov, A.A., Multicomponent Phase Diagrams: Applications for Commercial Aluminum Alloys. P. 1. Alloys of the Al–Fe–Mn–Si System, Amsterdam; Boston: Elsevier Science, 2005, pp. 1–46. URL: https://doi.org/10.1016/B978-0-08-044537-3.X5000-8

17. Karpov, A. V. , Sychev, A.E., Sivakova, A.O., Ustroistvo dlya izmereniya koeffitsienta Zeebeka termoelektricheskikh materialov v diapazone temperatur 300–800 K [Device for measuring the Seebeck coefficient of thermoelectric materials in the temperature range 300-800 K], Izmeritelnaya tekhnika, 2023, No 8, pp. 67–72. URL: https://doi.org/10.32446/0368-1025it.2023-8-67-722023

18. Karpov, A. V. , Morozov, Y.G., Bunin, V.A., Borovinskaya, I.P., Effect of Yttria additions on the electrical conductivity of SHS nitride ceramics, Inorganic Materials, 2002, V. 38, pp. 631–634. URL: https://doi.org/10.1023/A:1015881922939

19. Program for Thermodynamics Equilibrium Calculations “THERMO”. URL: https://ism.ac.ru/thermo/ (reference date 21/11/2024).

20. Diagrammy sostoyaniya dvoinykh metallicheskikh sistem [Diagrams of the state of double metal systems], Lyakishev, N.P. (Ed.), Moscow: Mashinostroenie, 1996–2000.

21. Silva, M.R., Brown, P.J., Forsyth, J.B., Magnetic moments and magnetic site susceptibilities in Mn5Si3, J. Phys.: Cond. Matt., 2002, V. 14. p. 8707. URL: https://doi.org/10.1088/0953-8984/14/37/307

22. Bie, L., Chen, X., Liu, P. , Zhang, T., Xu, X., Morphology Evolution of Mn5Si3 Phase and Effect of Mn content on Wear Resistance of Special Brass, Metals and Materials International, 2020, V. 26, pp. 431–443. URL: https://doi.org/10.1007/s12540-019-00243-0

23. Kourov, N.I., Marchenkov, V. V. , Korolev, A. V. , Stashkova, L.A., Emel’yanova, S.M., Weber, H.W., Osobennosti svoistv polumetallicheskikh ferromagnitnykh splavov Gejslera: Fe2MnAl, Fe2MnSi i Co2MnAl [Properties of semi-metallic ferromagnetic Geisler alloys: Fe2MnAl, Fe2MnSi and Co2MnAl], Fizika tverdogo tela, 2015, V. 57, Is. 4, pp. 684–691. DOI: 10.31857/S0015323023600624

24. Berezovsky, V. V. , Bazaleeva, K.O., Kalashnikov, V.S., Zavisimost udelnogo elektrosoprotivleniya tekhnicheski chistogo titana ot temperatury posle intensivnoi plasticheskoi deformatsii [Dependence of the electrical resistivity of technically pure titanium on temperature after intense plastic deformation], Trudy VIAM, 2015, No 3, pp. 34–37. URL: https://dx.doi.org/10.18577/2307-6046-2015-0-3-5-5

25. Gantmaher, V.F., Elektrony v neuporyadochennykh sredakh [Electrons in disordered media], Moscow: FIZMAILIT, 2005.

26. Mooij, J.H., Electrical conduction in concentrated disordered transition metal alloys, Physica Status Solidi (a), 1973, V. 17, Is. 2, pp. 521–530. DOI:10.1002/pssa.2210170217


Review

For citations:


Sivakova A.O., Semenchuk I.E., Karpov A.V., Sychev A.E. Thermoelectric properties of an alloy based on the Al–Mn–Si system, produced by SHS pressing. Voprosy Materialovedeniya. 2024;(4(120)):37-45. (In Russ.) https://doi.org/10.22349/1994-6716-2024-120-4-37-45

Views: 63


ISSN 1994-6716 (Print)