Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the possibility of creating a tribotechnically effective nanocomposite based on polyetheretherketone with a dispersed filler of low wear resistance

https://doi.org/10.22349/1994-6716-2024-120-4-69-77

Abstract

The possibility of using nanosized copper particles as a filler for polyetheretherketone (PEEK) in order to create a tribotechnically effective composite has been investigated. Based on the physical wear model, the calculated concentration dependences of the relative intensity of linear wear of the composite with respect to the matrix have been constructed for four sizes of dispersed filler from the nanoand micro-sized range. As a result, the ranges of effective filler concentrations have been determined when introducing nanocopper into PEEK. The molecular dynamics method has been used to study the causes of increased wear resistance of the nanocomposite when introducing dispersed copper particles. It has been found that in the presence of a nanofiller, the energy of intermolecular bonds increases significantly, differences in the density of polymer molecules in the contact area before and after shear, as well as differences in the energies of intermolecular interaction between the contacting surfaces depending on the shear time have been revealed.

About the Authors

V. Е. Zharov
Russian State Scientific Center for Robotics and Technical Cybernetics (RTC)
Russian Federation

21В Tikhoretsky Ave, 194064 St Petersburg



E. B. Sedakova
Peter the Great St Petersburg Polytechnic University; Institute for Problems in Mechanical Engineering of the Russian Academy of Sciences
Russian Federation

Dr Sc (Eng).

29 Polytechnicheskaya St, 195251 St Petersburg; 61 Bolshoy Ave, Vasilievsky Island, 199178 St Petersburg



M. A. Skotnikova
Peter the Great St Petersburg Polytechnic University
Russian Federation

Dr Sc (Eng).

29 Polytechnicheskaya St, 195251 St Petersburg



S. Li
Chengdu Aeronautic Polytechnic
China

Ph.D. (Eng).

Chengdu



A. N. Naumov
Peter the Great St Petersburg Polytechnic University
Russian Federation

29 Polytechnicheskaya St, 195251 St Petersburg



References

1. Omrani, E., Menezes, P.L., Rohatgi, P.K., State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world, J. Engineering Science and Technology, 2016, V. 12, No 9, pp. 717–736.

2. Mikitaev, A.K., Salamov, A.H., Beev, A.A., Beeva, D.A., Napolnenie poliefirefirketonov (PEEK) kak sposob polucheniya kompozitov s vysokimi ekspluatatsionnymi svoistvami [Filing the polyetheretherketone (PEEK) as a way of composites of high performance], Plasticheskie massy, 2017, No 5–6, pp. 6–9.

3. Myshkin, N.K., Gutsev, D.M., Grigoriev, F.A., Zhang, G., Wang, W. , Li, G., Kharakteristiki nanokompozitov na osnove PEEK pri trenii po stali [Performance of PEEK-based nanocomposites at dry friction against steel], Trenie i iznos, 2021, V. 42, No 3, pp. 225–229.

4. Panin, S. V. , Kornienko, L.A., Alexenko, V.O., Buslovich, D.G., Nguen, D.A., Shilko, S. V. , Antifriktsionnye i mekhanicheskie svoistva termoplastichnykh uglerodnykh kompozitov na osnove poliefirefirketona [Antifriction and mechanical properties of the thermoplastic matrix of polyetheretherketone-based composities], Trenie i iznos, 2020, V. 41, No 4, pp. 427–435.

5. Li, S., Sedakova, E.B., Molekulyarnoe modelirovanie kinetiki friktsionnogo razrusheniya polimernykh kompozitov na primere F4K20 [Molecular modeling of frictional fracture kinetics of polymer composites using F4K20 as an example], Trenie i iznos, 2022, V. 43, No 6, pp. 612–620.

6. Choy, C.L., Kwok, K.W., Leung, W.P., et al., Thermal conductivity of poly (ether ether ketone) and its short‐fiber composites, Journal of Polymer Science Part B: Polymer Physics, 1994, V. 32, No 8, pp. 1389–1397.

7. Cheng, S.Z.D., Cao, M. Y. , Wunderlich, B., Glass transition and melting behavior of poly (oxy-1, 4-phenyleneoxy-1, 4-phenylenecarbonyl-1, 4-phenylene) (PEEK), Macromolecules, 1986, V. 19, No 7, pp. 1868–1876.

8. Song, H., Wang, Z, Yang, J., et al., Facile synthesis of copper/polydopamine functionalized grapheme oxide nanocomposites with enhanced tribological performance, Chemical Engineering Journal, 2017, V. 324, pp. 51–62.

9. Fan, S., Gao, S., Duan, C., et al., Facile synthesis of copper nanoparticles and nanowires on polyetheretherketone-matrix nanocomposites: Thermal conductivity, dynamic mechanical properties and wear resistance, Composite Science and Technology, 2022, V. 219, p. 109224.

10. Dobychin, N.M., Morozov, A. V. , Nikulin, A. V. , Sachek, B.Ya., Anisimov, A. V. , Planirovanie experimenta pri issledovanii tribotekhnicheskih kharakteristik phenolnykh ugleplastikov [Experimental planning for the study of tribotechnical characteristics of phenolic carbon fiber plastics], Voprosy Materalovedeniya, 2009, No 1, pp. 186–193.

11. Sedakova, E.B., Kozyrev, Yu.P., Vliyanie soderzhaniya dispersnogo napolnitelya na adgeziyu mezhdu napolnitelem i matritsey v polymernykh nanocompozitakh tribotekhnicheskogo naznacheniya [The effect of the dispersed filler content on the adhesion between the filler and the matrix in tribotechnical polymer nanocomposites], Voprosy Materalovedeniya, 2013, No 13, pp. 70–75.

12. Berlin, A.A., Volfson, C.A., Oshmyan, V.G., Enikolopov, N.S., Printsipy sozdaniya compozitsionnykh polymernykh materialov [Principles of creation of composite polymer materials], Moscow: Khimiya, 1990.

13. Bakhareva, V.E., Rubin, M.B., Lobyntseva, I. V. , Trizno, A. V. , Primenenie v narodnom khozyastve podshipnikov skolzheniya iz polymernykh compozitsionnykh materialov [The use of sliding bearings made of polymer composite materials in the national economy], Leningrad: LDNTP, 1991.

14. Luscheikin, G.A., Modelirovanie i optimizatsiya polymernykh materialov [Modeling and optimization of polymer materials], Moscow: Kolos, 2009.

15. Wang, B., Zhang, K., Zhou, C., et al., Engineering the mechanical properties of CNT/ PEEK nanocomposites, RSC advances, 2019, V. 9, No 23, pp. 12836–12845.

16. Pan, L., Guo, H., Zhong, L., et al., Influence of surface-modified glass fibers on interfacial properties of GF/PEEK composites using molecular dynamics, Computational Materials Science, 2021, No 188, p. 110216.

17. Sun, H., Jin, Z., Yang, C., et al., COMPASS II: extended coverage for polymer and druglike molecule databases, Journal of molecular modeling, 2016, V. 22, No 2, pp. 1–10.

18. Rasheva, Z., Zhang, G., Burkhart, Th., A correlation between the tribological and mechanical properties of short carbon fiber reinforced PEEK materials with different fiber orientations, Tribology International, 2010, V. 43, pp. 1430–1437.

19. Li, S., Sedakova, E.B., Modelirovanie vliyaniya nanorazmernykh napolnitelei na mekhanicheskie svoistva i iznosostoikost kompozita na osnove poliefirefirketona [Modeling the influence of nanosized fillers on the mechanical properties and wear resistance of a composite based on polyether ether ketone], Problemy mashinostroeniya i nadezhnost mashin, 2023, V. 52, No 3, pp. 241–245.


Review

For citations:


Zharov V.Е., Sedakova E.B., Skotnikova M.A., Li S., Naumov A.N. Study of the possibility of creating a tribotechnically effective nanocomposite based on polyetheretherketone with a dispersed filler of low wear resistance. Voprosy Materialovedeniya. 2024;(4(120)):69-77. (In Russ.) https://doi.org/10.22349/1994-6716-2024-120-4-69-77

Views: 53


ISSN 1994-6716 (Print)