

Carbon fiber with a gradient of matrix composition based on benzoxazinephthalonitrile compositions
https://doi.org/10.22349/1994-6716-2024-120-4-78-87
Abstract
A technology for producing a gradient of a binder in carbon fiber reinforced plastic by powder spraying has been developed. The plastic based on benzoxazine-phthalonitrile binder has been obtained. The binder in the upper layers of the carbon fiber reinforced plastic contains mainly phthalonitrile, the binder in the center of the plate contains mainly benzoxazine. The binder composition changes smoothly from the surface to the center of the sample, i.e. there is a gradient of the matrix composition. To improve impact resistance, a high-temperature thermoplastic is introduced into the binder composition, the concentration of which also changes over the thickness of the sample. Compared with a homogeneous carbon fiber reinforced plastic with the same content of components in the binder, the gradient carbon fiber reinforced plastic has shown higher heat resistance and impact strength without loss of rigidity.
Keywords
About the Authors
K. A. AndrianovaRussian Federation
Cand Sc. (Eng).
10 Karl Marx St, 420111 Kazan, Republic of Tatarstan
V. S. Nikitin
Russian Federation
10 Karl Marx St, 420111 Kazan, Republic of Tatarstan
R. R. Amirov
Russian Federation
Dr Sc. (Chem).
18 Kremlevskaya St, 420008 Kazan, Republic of Tatarstan
I. S. Antipin
Russian Federation
Dr Sc. (Chem).
18 Kremlevskaya St, 420008 Kazan, Republic of Tatarstan
L. M. Amirova
Russian Federation
Dr Sc. (Chem).
10 Karl Marx St, 420111 Kazan, Republic of Tatarstan
References
1. Bornosuz, N. V. , Korotkov, R.F., Shutov, V. V. , Sirotin, I.S., Gorbunova, I. Y. , Benzoxazine copolymers with mono-and difunctional epoxy active diluents with enhanced tackiness and reduced viscosity, Journal of Composites Science, 2021, V. 5, No 9.
2. Gu, H., Gao, C., Du, A., Guo, Y. , Zhou, H., Zhao, T. , Guo, Z., An overview of high-performance phthalonitrile resins: fabrication and electronic applications, Journal of Materials Chemistry C, 2022, V. 10, No 8, pp. 2925–2937.
3. Yakovlev, M. V. , Kuchevskaia, M.E., Terekhov, V.E., Morozov, O.S., Babkin, A. V. , Kepman, A. V. , Avdeev, V. V. , Bulgakov, B., Easy processable tris-phthalonitrile based resins and carbon fabric reinforced composites fabricated by vacuum infusion, Materials Today Communications, 2022, V. 33.
4. Bulgakov, B.A., Morozov, O.S., Timoshkin, I.A., Babkin, A. V. , Kepman, A. V. , Bisphthalonitrile-based thermosets as heat-resistant matrices for fiber reinforced plastics, Polymer Science, Series C., 2021, V. 63, pp. 64–101.
5. Kurnosov, A.O., Vavilova, M.I., Gulyaev, I.N., Akhmadieva, K.R., Bezrastvornaya tekhnologiya izgotovleniya preprega na osnove vysokotemperaturnogo poroshkovogo ftalonitrilnogo svyazuyushchego [Solvent-free prepreg manufacturing technology based on high-temperature powder phthalonitrile binder], Voprosy Materialovedeniya, 2021, No 4(108), pp. 165–178. URL: https://doi.org/10.22349/1994-67162021-108-4-165-178
6. Soudjrari, S., Derradji, M., Amri, B., Djaber, K., Mehelli, O., Tazibet, S., Khadraoui, A., Novel vanillin-based benzoxazine containing phthalonitrile thermosetting system: Simple synthesis, autocatalytic polymerization and high thermomechanical properties, High Performance Polymers, 2022, V. 34, No 7, pp. 818–827.
7. Brunovska, Z., Ishida, H., Thermal study on the copolymers of phthalonitrile and phenylnitrile‐ functional benzoxazines, Journal of applied polymer science, 1999, V. 73, No 14, pp. 2937–2949.
8. Chen, L., Ren, D., Chen, S., Li, K., Xu, M., Liu, X., Improved thermal stability and mechanical properties of benzoxazine-based composites with the enchantment of nitrile, Polymer Testing, 2019, V. 74, pp. 127–137.
9. Dayo, A.Q., Wang, A.R., Derradji, M., Kiran, S., Zegaoui, A., Wang, J., Liu, W.B., Copolymerization of mono and difunctional benzoxazine monomers with bio-based phthalonitrile monomer: Curing behaviour, thermal, and mechanical properties, Reactive and Functional Polymers, 2018, V. 131, pp. 156–163.
10. Lv, D., Dayo, A.Q., Wang, A.R., Kiran, S., Xu, Y.L., Song, S., Gao, B.-C., Curing behavior and properties of benzoxazine‐co‐self‐promoted phthalonitrile polymers, Journal of Applied Polymer Science, 2018, V. 135, No 31, Art. 46578. DOI:10.1002/app.46578
11. Liu, Y. , Yin, R., Yu X., Zhang, K., Modification of Solventless‐Synthesized Benzoxazine Resin by Phthalonitrile Group: An Effective Approach for Enhancing Thermal Stability of Polybenzoxazines, Macromolecular Chemistry and Physics, 2019, V. 220, No 1.
12. Andrianova, K.A., Halikov, A.A., Bezzametnov, O.N., Amirova, L.M., Funktsionalno-gradientny ugleplastik na osnove epoksidnoi matritsy, modifitsirovannoi termoelastoplastom [Functionally graded carbon fiber based on an epoxy matrix modified with thermoplastic elastomer], Voprosy Materialovedeniya, 2023, No 3 (115), pp. 170–177.
13. Hassan, E., Zekos, I., Jansson, P. , Pecur, T., Floreani, C., Robert, C., Stack, M.M., Erosion mapping of through-thickness toughened powder epoxy gradient glass-fiber-reinforced polymer (GFRP) plates for tidal turbine blades, Lubricants, 2021, V. 9, No 3.
14. Handbook of Benzoxazines Resins, Ishida, H., Agag, T. (Eds.) Elsevier: Amsterdam, 2011, Ch. 1, pp. 3–69.
15. Antipin, I.S., Amirova, L.M., Andrianova, K.A., Madiyarova, G.M., Shumilova, T.A., Kazymova, M.A., Amirov, R.R., Bezrastvorny sintez benzoksazinovykh monomerov razlichnogo stroeniya i polimery na ikh osnove [Solvent-free synthesis of benzoxazine monomers of various structures and polymers based on them], Vestnik tekhnologicheskogo universiteta, 2023, V. 26, No 9, pp. 17–25.
16. Arinina, M.P., Ilyin, S.O., Makarova, V. V. , Gorbunova, I.Yu., Kerber, M.L., Kulichikhin, V.G., Sovmestimost i reologicheskie svoistva smesei epoksidianovogo oligomera s aromaticheskimi poliefirami, Vysokomolekulyarnye soedineniya. Ser. A, 2015, V. 57, No 2, pp. 152–161.
Review
For citations:
Andrianova K.A., Nikitin V.S., Amirov R.R., Antipin I.S., Amirova L.M. Carbon fiber with a gradient of matrix composition based on benzoxazinephthalonitrile compositions. Voprosy Materialovedeniya. 2024;(4(120)):78-87. (In Russ.) https://doi.org/10.22349/1994-6716-2024-120-4-78-87