

On the corrosive impact of variable liquid wetting on the surface of pipe steel for gas lines in the presence of СО2
https://doi.org/10.22349/1994-6716-2024-120-4-124-136
Abstract
The corrosion resistance in carbon dioxide environments of a number of structural steels used for pipelines of gas fields has been studied. The aggressive conditions of gas facilities are characterized by the fact that most of the internal space of pipelines is filled with the gas phase. Corrosion effects on steel, when only a small gas pipeline is filled with a liquid phase, have previously been practically unstudied. During the research, a corrosion stand specially designed for this purpose was used, on which some of the most aggressive conditions of alternating wetting of the gas pipeline wall with water were reproduced. The corrosive activity of such conditions is associated with the destruction of films of corrosion products. In places where they crack and peel, local corrosion damage forms on the steel. The corrosion behavior of pipe steels from different gas pipelines under conditions of variable wetting with water was studied. A comparative assessment of the resistance of pipe steels 09Mn2Si and 13KhFA in carbon dioxide environments under conditions of variable wetting and moisture condensation, the main effects of internal corrosion, was carried out. It was determined that the main type of destruction is local corrosion of the steel surface of the pipes. The influence of the microstructure of steels and their chromium content on their corrosion resistance under conditions of transport of CO2-containing gas through pipelines has been assessed.
About the Authors
R. K. VagapovRussian Federation
Dr Sc. (Eng), Cand Sc. (Chem).
15, bld. 1 Gazovikov St, Razvilka, Leninsky municip., Moscow region, 142717
K. A. Ibatullin
Russian Federation
Cand Sc. (Chem).
15, bld. 1 Gazovikov St, Razvilka, Leninsky municip., Moscow region, 142717
A. D. Gaizullin
Russian Federation
15, bld. 1 Gazovikov St, Razvilka, Leninsky municip., Moscow region, 142717
D. S. Fedotov
Russian Federation
15, bld. 1 Gazovikov St, Razvilka, Leninsky municip., Moscow region, 142717
References
1. Baydin, I.I., Kharitonov, A.N., Velichkin, A. V. , et al., Vliyanie uglekisloty v prirodnom gaze gazokondensatnoi zalezhi nizhnemelovykh otlozheny Yubileinogo neftegazokondensatnogo mestorozhdeniya na ekspluatatsiyu UKPG-NTS [Effect of carbon dioxide in the natural gas of the gas condensate reservoir of the Lower Cretaceous deposits of Yubileynoe oil and gas condensate field on the operation of the UKPG-NTS], Nauka i tekhnika v gazovoy promyshlennosti, 2018, V. 74, No 2, pp. 23–35.
2. Koryakin, A.Yu., Kobychev, V.F., Kolinchenko, I. V. , Yusupov, A.D., Usloviya protekaniya uglekislotnoi korrozii na obiektakh dobychi Achimovskikh otlozheny, metody kontrolya i prognozirovaniya [Conditions of the carbon dioxide corrosion on the production facilities of Achimovskie deposits, methods of monitoring and forecasting], Gazovaya Promyshlennost, 2017, V. 761, No 12, pp. 84–89.
3. Vagapov, R.K., Resistance of Steels under Operating Conditions of Gas Fields Containing Aggressive CO2 in the Produced Media, Inorganic Materials: Applied Research, 2022, V. 13, No 1, pp. 240–245. DOI: 10.1134/S2075113322010397
4. Alamr, A.H., Localized corrosion and mitigation approach of steel materials used in oil and gas pipelines: An overview, Engineering Failure Analysis, 2020, V. 116, Art. 104735. URL: https://doi.org/10.1016/j.engfailanal.2020.104735
5. Tan, Z., Yang, L., Zhang, D., et al., Development mechanism of internal local corrosion of X80 pipeline steel, Journal of Materials Science & Technology, 2020, V. 49, pp. 186–201. DOI: 10.1016/j.jmst.2019.10.023
6. Mansoori, H., Mirzaee, R., Esmaeilzadeh, F. , et al., Pitting corrosion failure analysis of a wet gas pipeline, Engineering Failure Analysis, 2017, V. 82, pp. 16–25. DOI: 10.1016/j.engfailanal.2017.08.012
7. Amezhnov, A. V. , Sravnitelny analiz metodov korrozionnykh ispytany stalei dlya neftepromyslovykh truboprovodov [The comparative analysis of corrosion testing methods of steels for oil-field pipelines], Problemy chernoi metallurgii i materialovedeniya, 2019, No 4, pp. 36–49.
8. Andreev, N.N., Sivokon, I.S., Metodologiya laboratornogo testirovaniya ingibitorov uglekislotnoi korrozii dlya neftepromyslovykh truboprovodov [Methodology of laboratory assessment of efficiency of carbon dioxide corrosion inhibitors in oilfield pipelines], Praktika protivokorrozionnoi zashchity, 2014, No 74 (4), pp. 36–43.
9. Kantyukov, R.R., Vagapov, R.K., Zapevalov, D.N., et al., Primenenie innovatsionnogo ispytatelnogo stenda dlya issledovaniya korrozionnykh protsessov v usloviyakh uglekislotnykh sred gazovykh mestorozhdeny [Application of innovative test stand to study corrosion processes under carbon dioxide environment of gas fields], Gazovaya Promyshlennost, 2023, V. 854, No 11, pp. 78–85.
10. Rozi, F. , Mohebbi, H., Ismail, M.C., et al., Laboratory investigation on the condensation and corrosion rates of top of line corrosion in carbon steel: a case study from pipeline transporting wet gas in elevated temperature, Corrosion engineering, science and technology, 2018, No 6, V. 53, pp. 444–448. DOI: 10.1080/1478422X.2018.1499169
11. Vagapov, R.K., Kantyukov, R.R., Zapevalov, D.N., Investigation of the corrosiveness of moisture condensation conditions at gas production facilities in the presence of СО2, International Journal of Corrosion and Scale Inhibition, 2021, No 3 (10), pp. 994–1010. DOI: 10.17675/2305-6894-2021-11-1-5
12. Vagapov, R.K., Analiz vliyaniya agressivnykh faktorov i uslovy na sostav korrozionnykh produktov [Аnalysis of the influence of aggressive factors and conditions on the composition of corrosive products], Voprosy Materialovedeniya, 2022, No 3 (111), pp. 85–97. DOI:10.22349/1994-6716-2022-111-3-85-97
13. Gao, K.Yu.F., Pang, X., et al., Mechanical properties of CO2 corrosion product scales and their relationship to corrosion rates, Corrosion Science, 2008, V. 50, pp. 2796–2803. DOI: 10.1016/j.corsci.2008.07.016
14. Zhang, Q., Li, J., Liu, J., et al., Internal localized corrosion of X100 pipeline steel under simulated flow conditions, Journal of Electroanalytical Chemistry, 2023, V. 945, Art. 117680. DOI: 10.1016/j.expthermflusci.2023.111048
15. Yin, Z.F., Zhao, W.Z., Feng, Y.R., et al., Scaling characteristics and growth of corrosion product films in turbulent flow solution containing saturated CO2, Materials and Corrosion, 2009, No 1, V. 60, pp. 5–13. DOI: 10.1002/maco.200805040
16. Li, J., Wang, D., Xie, F., Failure analysis of CO2 corrosion of natural gas pipeline under flowing conditions, Engineering Failure Analysis, 2022, V. 137, Art. 106265. DOI: 10.1016/j.engfailanal.2022.106265
17. Baydin, I.I., Kovalenko, A. V. , Gumerova, N. V. , et al., Analiz dinamiki vnedreniya plastovoi vody v gazovuyu zalezh v usloviyakh sokrashcheniya dobychi gaza [Analysis of the dynamics of reservoir water introduction in the gas reservoir on the decline of gas production], Neft i gaz, 2018, No 6, pp. 41–44. DOI: 10.31660/0445-0108-2018-6-41-44
18. Okoro, E., Kurah, A.M., Sanni, S.E., et al., Flow line corrosion failure as a function of operating temperature and CO2 partial pressure using real time field data, Engineering Failure Analysis, 2019, V. 102, pp. 160–169. DOI: 10.1016/j.engfailanal.2019.04.037
19. Elgaddafi, R., Ahmed, R., Osisanya, S., Modeling and experimental study on the effects of temperature on the corrosion of API carbon steel in CO2-saturated environment, Journal of Petroleum Science and Engineering, 2021, V. 196, Art. 107816. URL: https://doi.org/10.1016/j.petrol.2020.107816
20. Li, J., Liu, Z., Du, C., et al., Study on the corrosion behaviours of API X65 steel in wet gas environment containing CO2, Corrosion engineering, science and technology, 2017, No 4, V. 52, pp. 317–323. URL: https://doi.org/10.1080/1478422X.2016.1278513
21. Kantyukov, R.R., Zapevalov, D.N., Vagapov, R.K., Ibatullin, K.A., Patent RF No 2772614: Sposob korrozionnykh ispytany i ustanovka dlya ego osushchestvleniya [Corrosion testing method and installation for its implementation], Applied 26.07.2021, Publ. 23.05.2022.
22. Vagapov, R.K., Mikhalkina, O.G., Lopatkin, V.N., et al., Comparison of the aggressiveness of hydrogen sulfide media to steel in the vapor and water phases, Voprosy Materialovedeniya, 2023, No 3, V. 115, pp. 188–201. DOI: 10.22349/1994-6716-2023-115-3-188-201
23. Ochoa, N., Vega, C., Pebere, N., et al., CO2 corrosion resistance of carbon steel in relation with microstructure changes, Materials Chemistry and Physics, 2015, V. 156, pp. 198–205. URL: http://dx. doi.org/10.1016/j.matchemphys.2015.02.047
24. Yang, S., Zhao, M., Feng, J., et al., Induced-Pitting Behaviors of MnS Inclusions in Steel, High Temp. Mater. Proc., 2018, No 9–10, V. 37, pp. 1007–1016. URL: https://doi.org/10.1515/htmp-2017-0155
25. Rodionova, I.G., Baklanova, O.N., Amezhnov, A. V. , et al., Vliyanie nemetallicheskikh vklyucheny na korrozionnuyu stojkost uglerodistykh i nizkolegirovannykh stalei dlya neftepromyslovykh truboprovodov [The influence of non-metallic inclusions on the corrosion resistance of carbon and low-alloy steels for oil field pipelines], Stal, 2017, No 10, pp. 41–48.
26. Vagapov, R.K., Lopatkin, V.N., Ibatullin, K.A., et al. , Issledovanie vliyaniya mikrostruktury stali 09G2S na lokalnuyu korroziyu gazoprovodov v protsesse ikh ekspluatatsii [Effect investigation of microstructure of steel 09G2S on local corrosion of gas pipelines during their operation], Materialovedenie, 2024, No 4, pp. 20–26. DOI: 10.31044/1684-579X-2024-0-4-20-26
27. Gupta, K.K., Kharatian, S., Mishin, O. V. , Ambat, R., CO2 corrosion resistance of low-alloy steel tempered at different temperatures, Corrosion Science, 2024, V. 232, Art. 112027. URL: https://doi.org/10.1016/j.corsci.2024.112027
28. Xu, L., Wang, B., Zhu, J., et al., Effect of Cr content on the corrosion performance of lowCr alloy steel in a CO2 environment, Applied Surface Science, 2016, V. 379, pp. 39–46. URL: http://dx.doi.org/10.1016/j.apsusc.2016.04.049
29. Choi, Y.-S., Nešić, S., Jung, H.-G., Effect of alloying elements on the corrosion behavior of carbon steel in CO2 environments, Corrosion, 2018, No 5, V. 74, pp. 566–576. https://doi.org/10.5006/2705
30. Stepanov, A.I., Ashikhmina, I.N., Belikov, S. V. , et al., Nemetallicheskie vklyucheniya v nizkolegirovannoi stali 13KhFA dlya nefteprovodnykh trub povyshennoi nadezhnosti [Non-metallic inclusions in low-alloy steel 13KhFA for oil pipeline pipes of increased reliability], Stal, 2014, No 6, pp. 83–85.
31. Petrova, V.F., Guseva, A.A., Issledovanie vliyaniya mikrostruktury stali 13HFA na udarnuyu vyazkost tolstostennykh besshovnykh trub [Investigation of the effect of the microstructure of 13XFA steel on the impact strength of thick-walled seamless pipes], Chernye metally, 2020, No 2, pp. 47–51.
32. Amezhnov, A. V. , Rodionova, I.G., Vasechkina, I.A., et al., Vliyanie strukturnykh kharakteristik trubnykh stalei na pokazateli ikh korrozionnoi stoikosti [Influence of pipe steel structural characteristics on their corrosion resistance], Metallurg, 2022, No 11, pp. 25–33. DOI: 10.52351/00260827_2022_11_25
33. Gupta, K.K., Kharatian, S., Mishin, O. V. , Ambat, R., The impact of minor Cr additions in low alloy steel on corrosion behavior in simulated well environment, npj Materials Degradation, 2023, V. 7, pp. 1–12. URL: https://doi.org/10.1038/s41529-023-00393-y
Review
For citations:
Vagapov R.K., Ibatullin K.A., Gaizullin A.D., Fedotov D.S. On the corrosive impact of variable liquid wetting on the surface of pipe steel for gas lines in the presence of СО2. Voprosy Materialovedeniya. 2024;(4(120)):124-136. (In Russ.) https://doi.org/10.22349/1994-6716-2024-120-4-124-136