

Regarding the application of the local criterion for brittle fracture in order to relate the crack resistance of high-strength steels with the test results of samples with a concentrator and the microstructural characteristics of the material
https://doi.org/10.22349/1994-6716-2024-120-4-137-161
Abstract
This work is devoted to the research of high-strength medium-alloy martensitic and bainite-martensitic steels in various structural states. The critical values of the J-integral were determined and their stable correlation with the results of tensile test of cylindrical samples with the circumferential deep grooves was obtained. To confirm this correlation, the statistical formulation of the local criterion for brittle fracture proposed in previous works was used as an energy condition for the propagation of microcracks crossing through grain boundaries with large-angle misorientation of the crystal lattice. The analysis of the relationship between parameters used in the proposed local criterion and the structural characteristics of the material was performed. The predictive ability of the proposed model to determine the temperature dependence of fracture toughness was also analyzed.
Keywords
About the Authors
A. V. IlyinRussian Federation
Dr Sc. (Eng).
49 Shpalernaya St, 191015 St Petersburg
A. A. Lavrentiev
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
A. V. Mizetsky
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
K. E. Sadkin
Russian Federation
Cand Sc. (Eng).
49 Shpalernaya St, 191015 St Petersburg
References
1. Golosienko, S.A., Ilyin, A. V. , Lavrentiev, A.A., Mikhailov, M.S., Motovili na, G.D., Petrov, S.N., Sadkin K.E., Soprotivlenie khrupkomu razrusheniyu vysokoprochnoy srednelegirovannoy stali i ego sviaz s parametrami strukturnogo sostoyaniya [Resistance to brittle fracture of highstrength medium-alloy steel and its relation to the parameters of the structural state], Voprosy Materialovedenya, 2019, No 3 (99), pp. 128–147.
2. Ilyin, A. V. , Lavrentiev, A.A., Mizetsky, A. V. , O formulirovke localnogo kriteriya khrupkogo razrusheniya dlya prognozirovaniya treschinostoikosti vysokoprochnoi stali [On the formulation of a local brittle fracture criterion for predicting the crack resistance of high-strength steel], Voprosy Materialovedenya, 2020, No 3 (103), pp. 114–134.
3. Ilyin, A. V. , Lavrentev, A.A., Motovilina, G.D., Zabavicheva, E. V. , Petrov, S.N., O korrel’atsii staticheskoy treshinostoikosti vysokoprochnoy srednelegirovannoy stali s parametrami strukturnogo sostoyania i standartnymi mekhanicheskimi svoistvami [On the correlation of static crack resistance of high-strength medium-alloy steel with structural state parameters and standard mechanical properties], Voprosy Materialovedenya, 2023, No 1 (113), pp. 103–123.
4. Beremin, F.M., A local criterion for cleavage fracture of nuclear pressure vessel steel, Metal Transaction, 1983, V. 14, pp. 2277–2287.
5. Wallin, K., Laukkanen, A., Aspects of cleavage fracture initiation – relative influence of stress and strain, Fatigue Fract Eng Mater & Struct., 2006, V. 29 (9), pp. 788–799.
6. Kroon, M., Faleskog, J., A probabilistic model for cleavage fracture with a length scale influence of material parameters and constraint, Int. J. Fract., 2002, No 118, pp. 99–118.
7. Margolin, B.Z., Gulenko, A.G., Shvetsova, V.A., Prognozirovanie treshinostoikosti reaktornykh staley v veroyatnostnoy postanovke na osnove lokalnogo podkhoda [Predicting the crack resistance of reactor steels in a probabilistic formulation based on a local approach], Problemy prochnosti, 1999, P. 1–2, No 1–2, pp. 5–22.
8. Kopelman, L.A. Soprotivlyaemost svarnykh shvov khrupkomu razrusheniyu [Resistance of welds to brittle fracture], Leningrad: Mashinostroenie, 1978.
9. Meshkov, Yu.Ya., Fizicheskie osnovy razrusheniya metallicheskikh konstruktsy [Physical principles of failure of metallic structures], Kiev: Naukova dumka, 1981.
10. Chen, J.H., Cao, R., Micromechanism of Cleavage Fracture of Metals, Elsiever, 2015.
11. Metod difraktsii otrazhennykh elektronov v materialovedenii [The method of diffraction of reflected electrons in materials science], Schwartz, A., Kumar, M., Adams, B., Fild, D. (Eds.), Moscow: Teknosphera, 2014, pp. 376–393.
12. Petrov, S.N., Ptashnik, A. V. , Ekspress-metod opredeleniya granits byvshego austenitnogo zerna v stalyakh beinitno-martensitnogo klassa po localnym orientirovkam prevraschennoy struktury [Express method for determining the boundaries of the former austenitic grain in steels of the bainite-martensitic class by local orientations of the transformed microstructure], Metallovedenie i termicheskaya obrabotka metallov, 2019, No 5, pp. 5–12.
13. Pallaspuro, A.S., Kaijalainen, A., Mekhtonen, S., Effect of microstructure on the impact toughness transition temperature of direct-quenched steels, Materials Science & Engineering A, 2018, V. 712, рp. 671–680.
14. GOST R 59115.6-2021: Obosnovanie prochnosti oborudovania i truboprovodov atomnykh energeticheskikh ustanovok. Metody opredelenia kharakteristik treschinostoikosti konstruktsionnykh materialov [Substantiation of the strength of equipment and pipelines of nuclear power plants. Methods for determining the characteristics of crack resistance of structural materials], Moscow: Izd-vo standartov, 2021.
15. Pineau, A., Development of the local approach to fracture over the past 25 years: theory and applications, International Journal of Fracture, 2006, March, 138(1), pp. 139–166. DOI: 10.1007/s10704-006-0035-1
16. Gorynin, I. V. , Rybin, V. V. , Malyshevsky, V.A., Semicheva, T.G., Sherochina, L.G., Prevraschenie dislokatsionnogo martensita pri otpuske vtorichnotverdeyuschey stali [Transformation of dislocation martensite during tempering of secondary hardening steel], Metallovedenie i termicheskaya obrabotka metallov, 1999, No 3, pp. 13–19.
17. Aksakov, I.S., Anisimov, A. V. , Antipov, V.S., et al., Materialy dlya sudostroeniya i morskoy tekhniki [Materials for shipbuilding and marine engineering]: reference book, Gorynin, I.V. (Ed.), St Petersburg: Professional, 2009, V. 1.
18. Gorynin, I. V. , Rybin, V. V. , Malyshevsky, V.A., Osnovnye aspekty sozdania i primenenia vysokoprochnoy konstruktsionnoy stali [The main aspects of the creation and utilization of high-strength structural steel], Voprosy Materialovedenya, 1999, No 3 (20), pp. 7–21.
19. Karzov, G.P., Margolin, B.Z., Shvetsova, V.A., Fiziko-mekhanicheskoe modelirovanie protsessov razrusheniya [Physical and mechanical modeling of fracture processes], St Petersburg: Politeknika, 1993.
20. Margolin, B.Z., Fomenko, V.N., Gulenko A.G., Kostylev, V.I., Shvetsova, V.A., Dalneyshee razvitie modeli Prometey i metoda Unified Curve. Ch. 1: Razvitie modeli Prometey [Further development of the Prometheus model and the Unified Curve method. Part 1: Development of the Prometey model], Voprosy Materialovedenya, 2016, No 4 (88), pp. 120–150.
21. Margolin, B.Z., Fomenko, V.N., Shvetsova, V.A., Yurchenko, E.Yu., Radiatsionnoe i termicheskoe okhrupchivanie korpusnykh reaktornykh stalei: svyaz mekhanizmov okhrupchivaniya i razrusheniya s kharakteristikami zarozhdeniya i rasprostraneniya treshchin. Ch. 1: Strategiya, programma i metody eksperimentalnykh i raschetnykh issledovany [Radiation and thermal embrittlement of reactor vessel steels: the relationship of embrittlement and fracture mechanisms with the characteristics of crack generation and propagation. Part 1: Strategy, program and methods of experimental and computational research], Voprosy Materialovedenya, 2024, No 14 (117), pp. 173–194.
22. Margolin, B.Z., Fomenko, V.N., Shvetsova, V.A., Yurchenko, E.Yu., Radiatsionnoe i termicheskoe okhrupchivanie korpusnykh reaktornykh stalei: svyaz mekhanizmov okhrupchivaniya i razrusheniya s kharakteristikami zarozhdeniya i rasprostraneniya treshchin. Ch. 2: Kharakteristiki prochnosti i plastichnosti [Radiation and thermal embrittlement of reactor vessel steels: the relationship of embrittlement and fracture mechanisms with the characteristics of crack generation and propagation. Part 2: Characteristics of strength and plasticity], Voprosy Materialovedenya, 2024, No 14 (117), pp. 195–209.
23. Margolin, B.Z., Fomenko, V.N., Shvetsova, V.A., Yurchenko, E.Yu., Radiatsionnoe i termicheskoe okhrupchivanie korpusnykh reaktornykh stalei: svyaz mekhanizmov okhrupchivaniya i razrusheniya s kharakteristikami zarozhdeniya i rasprostraneniya treshchin. Ch. 3: Modelirovanie khrupkogo razrusheniya i analiz svyazi kharakteristik zarozhdeniya i rasprostraneniya mikrotreshchin s mekhanizmom okhrupchivaniya [Radiation and thermal embrittlement of reactor vessel steels: the relationship of embrittlement and fracture mechanisms with the characteristics of crack generation and propagation. Part 3: Modeling of brittle fracture and analysis of the relationship between the characteristics of the origin and propagation of microcracks with the embrittlement mechanism], Voprosy Materialovedenya, 2024, No 2 (118), pp. 166–186.
24. Lin, T., Evans, A.G., Ritchie, R.O., A statistical model of brittle fracture by transgranular cleavage, Journal of Mechanics and the Physics of Solids, 1986, No 25, pp. 477–497.
Review
For citations:
Ilyin A.V., Lavrentiev A.A., Mizetsky A.V., Sadkin K.E. Regarding the application of the local criterion for brittle fracture in order to relate the crack resistance of high-strength steels with the test results of samples with a concentrator and the microstructural characteristics of the material. Voprosy Materialovedeniya. 2024;(4(120)):137-161. (In Russ.) https://doi.org/10.22349/1994-6716-2024-120-4-137-161