Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Production of high-entropy nitrogen-doped CoCrFeNiMn alloy by selective laser melting

https://doi.org/10.22349/1994-6716-2025-121-1-47-58

Abstract

The paper presents the research results on high-entropy CoCrFeNiMnNx alloy obtained by selective laser melting. Powders of high-entropy alloy CoCrFeNiMnNx (with calculated nitrogen content x = 0.1 wt.%, 0.2 wt.%, 0.5 wt.%) are manufactured by mechanical alloying followed by plasma spheroidization. Alloys mechanical properties and its compaction by selective laser melting were investigated at room and cryogenic temperatures. Alloys with nitrogen content of 0.1 and 0.2 wt.% show an increase in mechanical properties at decreasing temperature. The conditional yield strength increased by 27.2 and 63.3%, the ultimate strength by 30.8 and 52.7%, respectively. The study was carried out with the financial support of the Ministry of Science and Higher Education of the Russian Federation (Grant Agreement No 075-03-2024-004).

About the Authors

E. V. Volokitina
ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого»
Russian Federation

29 Polytekhnicheskaya St, 195251 St Petersburg



L. V. Razumova
ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого»
Russian Federation

Cand. Sc. (Eng),

29 Polytekhnicheskaya St, 195251 St Petersburg



N. E. Ozerskoy
ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого»
Russian Federation

29 Polytekhnicheskaya St, 195251 St Petersburg



E. V. Borisov
ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого»
Russian Federation

Cand. Sc. (Eng),

29 Polytekhnicheskaya St, 195251 St Petersburg



N. G. Razumov
ФГАОУ ВО «Санкт-Петербургский политехнический университет Петра Великого»
Russian Federation

Dr. Sc. (Eng),

29 Polytekhnicheskaya St, 195251 St Petersburg



A. A. Popovich
Peter the Great St Petersburg Polytechnic University
Russian Federation

Dr. Sc. (Eng),

29 Polytekhnicheskaya St, 195251 St Petersburg



References

1. Ye h, J.W., et al., Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 2004, V. 6, No 5, pp. 299–303.

2. Ye h, J.W., Recent progress in high-entropy alloys, Annales de Chimie Science des Matériaux, 2006, V. 31, No 6, pp. 633–648.

3. Cantor, B., et al., Microstructural development in equiatomic multicomponent alloys, Materials Science and Engineering A, 2004, V. 375–377, No 1–2 (Spec. issue), pp. 213–218.

4. Laurent-Brocq, M., et al., Insights into the phase diagram of the CrMnFeCoNi high entropy alloy, Acta Mater., 2015, V. 88, pp. 355–365.

5. Otto, F., et al., The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy, Acta Mater., 2013, V. 61, No 15, pp. 5743–5755.

6. Laplanche, G., et al., Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater., 2016, V. 118, pp. 152–163.

7. Li, N., et al., Progress in additive manufacturing on new materials: A review, J Mater Sci Technol. 2019, V. 35, No 2, pp. 242–269.

8. Li, R., et al., Selective laser melting of an equiatomic CoCrFeMnNi high-entropy alloy: Processability, non-equilibrium microstructure and mechanical property, J Alloys Compd., 2018, V. 746, pp. 125–134.

9. Zhu, Z.G., et al., Hierarchical microstructure and strengthening mechanisms of a CoCrFeNiMn high entropy alloy additively manufactured by selective laser melting, Scr Mater., 2018, V. 154, pp. 20–24.

10. Chen, P., et al., Fabricating CoCrFeMnNi high entropy alloy via selective laser melting in-situ alloying, J. Mater Sci Technol., 2020, V. 43, pp. 40–43.

11. Moravcik, I., et al., Interstitial doping enhances the strength-ductility synergy in a CoCrNi medium entropy alloy, Materials Science and Engineering: A, 2020, V. 781, p. 139242.

12. Beyramali Kivy, M., Kriewall, C.S., Asle Zaeem, M., Formation of chromium-iron carbide by carbon diffusion inAlx CoCrFeNiCu high-entropy alloys, Mater Res Lett., 2018, V. 6, No 6, pp. 321–326.

13. He, Z.F., e t al., The effect of strain rate on mechanical properties and microstructure of a metastable FeMnCoCr high entropy alloy, Materials Science and Engineering: A, 2020, V. 776, p. 138982.

14. Chou, Y.L., et al., Pitting corrosion of the high-entropy alloy Co1.5CrFeNi1.5Ti0.5Mo0.1 in chloride-containing sulphate solutions, Corros Sci., 2010, V. 52, No 10, pp. 3481–3491.

15. Wang, Z., et al., On the mechanism of extraordinary strain hardening in an interstitial highentropy alloy under cryogenic conditions, J. Alloys Compd., 2019, V. 781, pp.734–743.

16. Lu, E., et al., Enhancement of vacancy diffusion by C and N interstitials in the equiatomic FeMnNiCoCr high entropy alloy, Acta Mater., 2021, V. 215, p. 117093.

17. Ye, Y. X., et al., Effect of interstitial oxygen and nitrogen on incipient plasticity of NbTiZrHf high-entropy alloys, Acta Mater., 2020, V. 199, pp. 413–424.

18. Wang, Z., et al., The effect of interstitial carbon on the mechanical properties and dislocation substructure evolution in Fe40.4Ni11.3Mn34.8Al7.5Cr6 high entropy alloys, Acta Mater., 2016, V. 120, pp. 228–239.

19. Song, M., et al., Nitrogen induced heterogeneous structures overcome strength-ductility trade-off in an additively manufactured high-entropy alloy, Appl Mater Today., 2020, V. 18, p. 100498.

20. Klimova, M., et al., Effect of nitrogen on mechanical properties of CoCrFeMnNi high entropy alloy at room and cryogenic temperatures, J. Alloys Compd., 2020, V. 849, p. 156633.


Review

For citations:


Volokitina E.V., Razumova L.V., Ozerskoy N.E., Borisov E.V., Razumov N.G., Popovich A.A. Production of high-entropy nitrogen-doped CoCrFeNiMn alloy by selective laser melting. Voprosy Materialovedeniya. 2025;(1(121)):47-58. (In Russ.) https://doi.org/10.22349/1994-6716-2025-121-1-47-58

Views: 64


ISSN 1994-6716 (Print)