

Modern methods of water treatment. Scale formation in thermal engineering equipment
https://doi.org/10.22349/1994-6716-2025-121-1-119-134
Abstract
The paper considers the existing methods of desalination of water with a high content of minerals, as well as the problem of scale formation and corrosion in thermal engineering equipment. Such water is often used for technical water supply of heating equipment, where the salts contained in it lead to a decrease in efficiency, as well as equipment failure. In addition, the problem of desalination of seawater is relevant for countries located in arid regions of the globe, limited by low rainfall and countries with a shortage of freshwater sources.
An express method of scale formation is presented, which allows evaluating the effect of modifying additives on the anti-scale properties of a protective polymer coating. The process of sediment formation in real devices with real media is quite long, and it may take a considerable time to obtain a result suitable for evaluation, which is unacceptable, since the selection and optimization of the composition will take years. In the proposed installation, the formation of scale deposits on the substrate occurs in 2 hours. The method consists in exposing a brass plate with a protective polymer coating in an experimental laboratory installation that provides conditions similar to the operating condition of heat exchange equipment with unchanged composition of the mineral solution and experimental conditions, and subsequent analysis of the coating and carbonate deposits. The analysis consists in determining the thickness of the formed scale layer on the modified and unmodified coating, determining the elemental composition of these deposits, as well as evaluating the uniformity of their distribution.
About the Authors
S. A. TyurinaRussian Federation
Cand Sc. (Eng),
78 Vernadsky Ave, 119454 Moscow
V. L. Demin
Russian Federation
Cand Sc. (Eng), 78 Vernadsky Ave, 119454 Moscow;
31/4 Leninsky Ave, 119071 Moscow
V. A. Golovin
Russian Federation
Dr Sc. (Eng),
31/4 Leninsky Ave, 119071 Moscow
V. A. Shchelkov
Russian Federation
Cand Sc. (Eng),
31/4 Leninsky Ave, 119071 Moscow
N. A. Rashutin
Russian Federation
78 Vernadsky Ave, 119454 Moscow
References
1. Talalaeva, V.F., Obzor metodov i tekhnologij opresneniya vody dlya tselei pitievogo vodosnabzheniya. [Review of methods and technologies of desalination of water for drinking water supply purposes], Ekologiya i vodnoe hozyaistvo, 2022, No 4, pp. 84–100. DOI: 10.31774/2658-7890-2022-4-4-84-100
2. Ya k ut se ni, S.P., Voda: resursy, zapasy, rynki [Water: resources, reserves, markets], Gornaya promyshlennost, 2022, No 4, pp. 120–128. DOI: 10.30686/1609-9192-2022-4-120-128
3. Alekin, O.A., Khimiya okeana [Ocean chemistry], Leningrad: Nauka, 1966, pp. 32–34.
4. Feofanov, Y.A., Rol retsirkulyatsii zhidkosti pri rabote sooruzheny biologicheskoi ochistki stochnykh vod [The role of liquid recycling in the operation of biological wastewater treatment plants], Voda i ekologiya: problemy i resheniya, 2019, No 4 (80), pp. 79–87. DOI: 10.23968/2305-3488.2019.24.4.79-87
5. Akhmedova, D.A., Tekhnologicheskaya skhema termicheskogo opresneniya morskoj vody s absorbcionnym teplovym nasosom kak sredstvo povysheniya effektivnosti [Technological scheme of thermal desalination of seawater with an absorption heat pump as a means of increasing efficiency], Deutsche Internationale Zeitschrift für zeitgenössische Wissenschaft, 2021, No 23, pp. 43–46. DOI: 10.24412/2701-8369-2021-23-43-46
6. Alieva, O.O., Tekhnologiya utilizatsionnogo opresneniya morskoi vody [Technology of utilization desalination of seawater], Vestnik nauki i obrazovaniya, 2022, No 1–1 (121), pp. 36–41.
7. Milyutin, Yu.V., Miftakhov, P.M., Sidelnikov, A.A., Rebets, M.V., Rudenko, I.A., Primenenie titanovykh splavov v kozhukhotrubnykh teploobmennykh apparatakh dlya morskoi vody [Application of titanium alloys in shell-and-tube heat exchangers for seawater], Vestnik MAKh, 2006, No 4. URL: https://cyberleninka.ru/article/n/primenenie-titanovyh-splavov-v-kozhuhotrubnyh-teploobmennyh-apparatah-dlya-morskoy-vody (date of reference: 12/21/2023)
8. Mironov, V.V., Mironov, D.V., Maksimov, L.I., Yakimov, V.V., Sposob opresneniya morskoj vody [Method of desalination of seawater], Russian Patent No 2,667,766 C1, Publ. 09/24/2018, Bul. No 27
9. Alieva, O.O., Tekhnologiya utilizacionnogo opresneniya morskoj vody [Technology of utilization desalination of seawater], Vestnik nauki i obrazovaniya, 2022, No 1–1 (121), pp. 36–41.
10. Blagin, E.V., Gorshkalev, A.A., Korneev, S.S., Urlapkin, V.V., Issledovanie vozmozhnosti povysheniya effektivnosti distilliatsionnoi opresnitelnoi ustanovki [Investigation of the possibility of increasing the efficiency of a distillation desalination plant], MNIZh, 2018, No 11–1 (77), pp. 63–69.
11. Safina, D.Z., Ispolzovanie ionoobmennykh metodov dlya vodopodgotovki energeticheskikh predpriyaty [The use of ion exchange methods for water treatment of energy enterprises], Vestnik magistratury, 2013, No 5 (20), pp. 26–27.
12. Lin Maung Maung, Shitova, V.O., Kagramanov, G. G., Ochistka stochnykh vod ot tyazhelykh metallov metodom ionnogo obmena [Wastewater treatment from heavy metals by ion exchange method], Uspekhi v khimii i khimicheskoi tekhnologii, 2016, No 2 (171), pp. 109–110.
13. Dymnikova, O.V., Krivoblotskaya, D.A., Dorzhderem, B., Analiz effektivnosti ionnogo obmena s uchetom stepeni zagryaznennosti stochnykh vod [Analysis of the efficiency of ion exchange, taking into account the degree of contamination of wastewater], Bezopasnost tekhnogennykh i prirodnykh sistem], 2017, No 3, pp. 23–32.
14. Rashutin, N.A., Tyurina, S.A., Metody modifikatsii zashchitnykh polimernykh pokryty. Innovatsionnye tekhnologii v elektronike i priborostroenii [Methods of modification of protective polymer coatings. Innovative technologies in electronics and instrumentation]: A collection of reports of the Russian Scientific and Technical Conference with international participation, Moscow, MIREA – Russian University of Technology, 2021, pp. 364–368.
15. Cherkinsky, S.N., Shtannikov, E.V., Gigienicheskie aspekty opresneniya vody [Hygienic aspects of water desalination], Gigiena i sanitariya, 1970, No 3. URL: https://cyberleninka.ru/article/n/gigienicheskie-aspekty-opresneniya-vody (date of reference: 12/21/2023)
16. Smirnova, E.E., Metody opresneniya morskoi vody [Methods of desalination of sea water], Vestnik nauki, 2020, V. 2, No 1 (22), pp. 249–252.
17. Seryshevsky, A.F., Strukturny analiz zhidkostei v amorfnykh telakh [Structural analysis of liquids in amorphous bodies]: study guide for universities, Moscow: Vysh. Shkola, 1980, 2nd ed.
18. Albagachieva, M.M., Nagibina, I.Y., Analiz metodov ochistki vody ot khloridov [Analysis of water purification methods from chlorides], Materials of the 8th International Scientific and Practical Conference, Omsk, 2021
19. Bon, A.I., Dzyubenko, V.G., Shishova, I.I., O nekotorykh protsessakh sozdaniya asimmetrichnykh i kompozitnykh obratnoosmoticheskikh membran [On some processes of creating asymmetric and composite reverse osmotic membranes], VMS. Seriya B, 1993, No 7. URL: https://cyberleninka.ru/article/n/o-nekotoryh-protsessah-sozdaniya-asimmetrichnyh-i-kompozitnyh-obratnoosmoticheskih-membran (date of reference: 12/21/2023)
20. Khokhryakova, E.A., Reznik, Ya.E., Vodopodgotovka [Water treatment]: reference book, Belikov S.E. (Ed.), Moscow: Aqua-Term, 2007.
21. Orlov, N.S., Ultra- i mikrofiltratsiya [Ultra- and microfiltration]: reference book, Moscow: RHTU im. Mendeleeva, 2014.
22. Gil, J.D., Ruiz -Aguirre, A., Roca, L., Zaragoza, G., Berenguel, M., Prediction models to analyse the performance of a commercial-scale membrane distillation unit for desalting brines from RO plants, Desalination, 2018, No 445, pp. 15–28. https://doi.org/10.1016/j.desal.2018.07.022
23. Yunes, M.S., Opresnenie morskoi vody metodom membrannoi distillyatsii – primenitelno k usloviyam selskogo hozyaistva Sirii [Desalination of seawater by membrane distillation – in relation to the conditions of agriculture in Syria]: Thesis on the topic of the Higher Attestation Commission of the Russian Federation 05.20.01, 2004.
24. Staudt-Bikel, K., Lichtenthaler, R.N., Pervaporatsiya – termodinamicheskie svoistva i vybor polimerov dlya membran. [Pervaporation – thermodynamic properties and choice of polymers for membranes], VMS. Seriya A, 1994, No 11, pp. 1924–1945.
25. Mona Naim, Mahmoud Elewa, Ahmed El -S ha fei, Abeer Moneer, Desalination of simulated seawater by purge-air pervaporation using an innovative fabricated membrane, Water Science & Technology, 2015, No 72 (5), pp. 785–793. URL: https://doi.org/10.1016/j.desal.2018.07.022
26. Mosin, O.V., Ignatov, I., Sovremennye tekhnologii opresneniya morskoj vody [Modern technologies of seawater desalination], Energosberezhenie i vodopodgotovka, 2012, No 4 (78), pp. 13–19.
27. Rashutin, N.A., Tyurina, S.A., Demin, V.L., Sidorova, S.A., Podkhody k izmeneniyu zashchitnykh svoistv polimernykh pokryty pri ispolzovanii modifitsiruyushchikh dobavok [Approaches to changing the protective properties of polymer coatings using modifying additives], Butlerovskie soobshcheniya, 2023, V. 76, No 12, pp. 42–50. ROI: jbc-01/23-76-12-42
28. Martínez Moya, S., Boluda Botella, N., Review of Techniques to Reduce and Prevent Carbonate Scale. Prospecting in Water Treatment by Magnetism and Electromagnetism, Water, 2021, No 13, Art. 2365. https://doi.org/10.3390/w13172365
29. Andreeva, S.A., Tyurina, S.A., Dalskaya, G.Y., Izuchenie kinetiki vysvobozhdeniya funktsionalnykh dobavok iz mikrokapsul [Study of the kinetics of the release of functional additives from microcapsules]: Collection of reports of the conference on promising materials and technologies (PMT-2023), 2023, V. 1, pp. 319–325.
30. Teplykh, S.Yu., Bochkov, D.S., Bazarova, A.O., Issledovanie sposobov udaleniya fosfatov iz bytovykh stochnykh vod [Investigation of methods for removing phosphates from domestic wastewater], Gradostroitelstvo i arkhitektura, 2020, V. 10, No 4, pp. 69–77. DOI: 10.17673/Vestnik.2020.04.9
31. Zimnyakov, A. M., Naumov, R. V., Analiz khimicheskikh otlozheny teplovogo oborudovaniya i sposoby ikh ochistki [Analysis of chemical deposits of thermal equipment and methods of their purification], Izvestiya PGU im. V. G. Belinskogo, 2010. No 21. URL: https://cyberleninka.ru/article/n/analiz-himicheskih-otlozheniy-teplovogo-oborudovaniya-i-sposoby-ih-ochistki (date of reference: 12/23/2023)
32. Pudova, N.E., Kakurkin, N.P., Byvaltsev, E.A., Otsenka effektivnosti antiskalantov po predotvrashcheniyu osazhdeniya malorastvorimykh soedineny [Evaluation of the effectiveness of antiscalants to prevent the deposition of poorly soluble compounds], Voda: khimiya i ekologiya, 2018, No 1–3 (114), pp. 120–126.
33. Golovin, V.A., Shchelkov, V.A., Rashutin, N.A., Tyurina, S.A., Demin, V.L., Mikrokapsulirovannye i aktivnye dobavki dlya povysheniya antinakipnykh svoistv polimernykh protivokorrozionnyh pokryty [Microcapsulated and active additives to enhance the anti-scale properties of polymer anticorrosive coatings], Korroziya: zashchita materialov i metody issledovany, 2023, No 4, pp. 131–141. URL: https://doi.org/10.61852/2949-3412-2023-1-4-131-141
Review
For citations:
Tyurina S.A., Demin V.L., Golovin V.A., Shchelkov V.A., Rashutin N.A. Modern methods of water treatment. Scale formation in thermal engineering equipment. Voprosy Materialovedeniya. 2025;(1(121)):119-134. (In Russ.) https://doi.org/10.22349/1994-6716-2025-121-1-119-134