

Methodology for improving technologies for production and repair of ship structures based on the integrated use of modern technologies, energy sources and welding materials
https://doi.org/10.22349/1994-6716-2025-121-1-135-151
Abstract
The paper presents the methodology of scientifically substantiated concept of production improvement and repair technologies for ship structures based on the integrated application of modern technologies, power sources and promising domestic welding and surfacing materials. The proposed methodological approach is formed in accordance with the adopted strategy of scientific and technological development of the Russian Federation, which is aimed at the realization of tasks and national priorities in ensuring the country’s ability to effectively respond to great challenges. The direction associated with increasing the efficiency of domestic industrial production is inextricably linked with the development of welding, related processes and technologies, as fundamental technologies for obtaining high-strength permanent joints in the production and repair of wearable products and structures for critical purposes. Research objective: Justification of the most effective ways to improve production technologies, repair of ship structures and port infrastructure equipment on the basis of complex application of advanced technologies of its production, repair and strengthening treatments of highly loaded products, modern power sources and domestic welding and surfacing materials. Achievement of the above formulated goal is based on the complex application of positive results in the performance of fundamental, oriented and applied research aimed at the creation of a new generation of shipbuilding steels and technologies of their application, organization of production of welding and surfacing materials, modern power supply systems.
Keywords
About the Authors
Yu. N. SaraevRussian Federation
Dr Sc (Eng),
1 Oktyabrskaya St, 677980 Yakutsk, Republic of Sakha (Yakutia)
V. D. Gorbach
Russian Federation
Dr Sc (Eng),
49 Shpalernaya St, 191015 St Petersburg
N. I. Golikov
Russian Federation
Dr Sc (Eng),
1 Oktyabrskaya St, 677980 Yakutsk, Republic of Sakha (Yakutia)
References
1. Strategiya nauchno-tekhnologicheskogo razvitiya Rossiiskoi Federatsii, utverzhdena Ukazom Prezidenta Rossiiskoi Federatsii ot 28.02.2024 [The Strategy of Scientific and Technological Development of the Russian Federation, approved by the Decree of the President of the Russian Federation dated February 28, 2024], No 145.
2. Larionov, V.P., Slepcov, O.I., Saraev, Yu.N., Bezborodov, V.P., Novye podkhody k razrabotke sovremennykh tekhnologii svarki i naneseniya pokryty dlya obespecheniya ekspluatatsionnoi nadezhnosti metallokonstruktsy i izdely, ekspluatiruemyh v usloviyakh Sibiri i Krainego Severa [New approaches to the development of modern welding and coating techknologies to ensure the operational reliability of metal structures and products operated in Siberia and the Far North]: Proceedings of the IV Eurasian Symposium on the problems of strength of materials and machines for cold climate regions. Plenary reports, Yakutsk, 2008, pp. 26–30.
3. Sleptsov, O.I., Mihailov, V.E., Petushkov, V.G., Yakovlev, G.P., Yakovleva, S.P., Povyshenie prochnosti svarnykh konstruktsy dlya Severa [Increasing the strength of welded structures for the North], Novosibirsk: Nauka, 1989.
4. Gorynin, I.V., Rybin, V.V., Malyshevsky, V.A., Khlusova, E.I., Khladostoikie stali dlya tekhnicheskikh sredstv osvoeniya arkticheskogo shelfa [Cold-resistant steels for technical means of Arctic shelf development], Voprosy materialovedeniya, 2009, No 3, pp. 108–126.
5. Moskvichev, V.V., Chernyaev, A.P., Chernyakova, N.A., Volokhov, G.M., Oganyan, E.S., Knyazev, D.A., Makhutov, N.A., Reznikov, D.O., Sleptsov, O.I., Raschetno-eksperimentalnye metody i tekhnologii obespecheniya prochnosti i zhivuchesti tekhniki Krainego Severa i Arktiki [Computational and experimental methods and technologies for ensuring the strength and survivability of equipment in the Far North and the Arctic]: Proceedings of the laureates of the international competition of scientific, technical and innovative developments aimed at the development of the Arctic and the continental shelf 2020, Ministerstvo energetiki Rossiiskoi Federatsii, Мoscow, 2020, pp. 78–81.
6. Sleptsov, O.I., Tekhnologicheskaya prochnost’svarnykh soedineny pri nizkikh temperaturakh [Technological strength of welded joints at low temperatures], Larionova V. P., (Ed.), Novosibirsk: Nauka, Sib. otdnie, 1984.
7. Saraev, Yu.N., Golikov, N.I., Sleptsov, O.I., Sidorov, M.M., Semenov, S.V., Razrabotka konceptsii sozdaniya i funktsionirovaniya regionalnykh tsentrov proizvodstva, vosstanovitelnogo remonta i uprochnyayushchej obrabotki resursoopredelyayushchih detalej i izdelij tekhniki, rabotayushchej v usloviyakh Krainego Severa i Arktiki [Development of a concept for the creation and operation of regional production centers, restoration repairs and reinforcing processing of resource-determining parts and products of machinery operating in the Far North and the Arctic], Proceedings of the XI Eurasian Symposium on Strength and Resource in conditions of climatically low temperatures, dedicated to the 85th anniversary of the birth of Academician V. P. Larionov (September 11–15, 2023, Yakutsk), EURASTRENCOLD-2023, Kirov: Izd-vo MCITO, 2023, pp. 531–537.
8. Saraev, Yu.N., Larionov, V.P., Sleptsov, O.I., Sivtsev, M.N., Bezborodov, V.P., M uratov, A.A., Obespechenie ekspluatatsionnoi nadezhnosti i ekologicheskoi bezopasnosti vysokootvetstvennykh konstruktsy, rabotayushchikh v usloviyakh Sibiri i Krainego Severa, ispolzovaniem adaptivnykh impulsnykh tekhnologii svarki [Ensuring operational reliability and environmental safety of highly responsible structures operating in Siberia and the Far North using adaptive pulse welding technologies]: Proceedings of the 2ndEurasian Symposium on the problems of strength of materials and machines for cold climate regions EURASTRENCOLD-2004, Plenarnye doklady, 2004, pp. 147–158.
9. Saraev, Yu.N., Gladkovsky, S.V., Golikov, N.I., et al., Poiskovye issledovaniya povysheniya nadezhnosti metallokonstruktsy otvetstvennogo naznacheniya, rabotayushchikh v usloviyakh ekstremalnykh nagruzok i nizkikh klimaticheskikh temperatur [Exploratory research to improve the reliability of critical metal structures operating under extreme loads and low climatic temperatures], Naukoemkie tekhnologii v proektakh RNF. Sibir, Tomsk, 2017, pp. 134–202.
10. Karkhin, V.A., Teplovye protsessy pri svarke [Thermal processes during welding], St Petersburg: Izd-vo Politekhnicheskogo universiteta, 2015.
11. Saraev, Yu.N., Obosnovanie konceptsii povysheniya bezopasnosti i zhivuchesti tekhnicheskikh sistem, ekspluatiruemykh v regionakh Sibiri i Krainego Severa, na osnove primeneniya adaptivnykh impulsnykh tekhnologii svarki [Substantiation of the concept of improving the safety and survivability of technical systems operated in the regions of Siberia and the Far North, based on the use of adaptive pulse welding technologies], Tyazheloe mashinostroenie, 2010, No 8, pp. 14–19.
12. Saraev, Yu.N., Poletika, I.M., Kozlov, A.V., Khomchenko, E.G., Formirovanie struktury i svoistv svarnykh soedineny v usloviyakh reguliruemogo teplovlozheniya pri impulsno-dugovoi svarke [Formation of the structure and properties of welded joints under conditions of controlled heat input during pulse arc welding], Fizicheskaya mezomekhanika, 2005, V. 8, No S, pp. 137–140.
13. Saraev, Yu.N., Bezborodov, V.P., Gladkovsky, S.V., Golikov, N.I., Povyshenie nadezhnosti metallicheskikh konstruktsy pri ekspluatatsii v usloviyakh nizkikh klimaticheskikh temperatur posredstvom kompleksnogo primeneniya sovremennykh metodov modifitsirovaniya zony svarnogo soedineniya [Improving the reliability of metal structures during operation at low climatic temperatures through the integrated application of modern methods for modifying the weld zone], Svarochnoe proizvodstvo, 2016, No 9, pp. 3–9.
14. Saraev, Yu.N., Adaptivnye impulsno-dugovye metody mekhanizirovannoi svarki pri stroitelstve magistralnykh truboprovodov [Improving the reliability of metal structures during operation at low climatic temperatures through the integrated application of modern methods for modifying the weld zone], Svarochnoe proizvodstvo, 2002, No 1, pp. 4–11.
15. Loos, A.V., Lukutin, A.V., Saraev, Yu.N., Istochniki pitaniya dlya impulsnykh tekhnologicheskikh protsessov [Power supplies for pulsed technological processes], Tomsk: Izdatelskaya poligraficheskaya firma TPU, 1998.
16. Sidorov, M.M., Golikov, N.I., Saraev, Yu.N., Tikhonov, R.P., Upravlenie urovnem ostatochnykh napryazhenii v stykovykh soedineniyakh trub iz nizkolegirovannykh stalei udarno-mekhanicheskoi obrabotkoi [Control of the level of residual stresses in butt joints of pipes made of low-alloy steels by impact machining], Tyazheloe mashinostroenie, 2023, No 10, pp. 23–28.
17. Golikov, N.I., Ammosov, A.P., Prochnost svarnykh soedineny rezervuarov i truboprovodov, ekspluatiruemykh v usloviyakh Severa [The strength of welded joints of tanks and pipelines operated in the conditions of the North], Yakutsk: Izdatelsky dom SVFU, 2002.
18. Larionov, V.P., Kasatkin, B.S., Elektrodugovaya svarka konstruktsy v severnom ispolnenii [Electric arc welding of structures in the northern version], Novosibirsk, 1986.
19. Larionov, V.P., Filippov, V.V., Khladostojkost materialov i elementov konstruktsy: Rezultaty i perspektivy [Cold resistance of materials and structural elements: Results and prospects], Novosibirsk, 2005.
20. Oryshchenko, A.S., Golosienko, S.A., Khlusova, E.I., Novoe pokolenie vysokoprochnykh korpusnykh stalei [A new generation of high-strength body steels], Sudostroenie, 2013, No 4, pp. 73–76.
21. Saraev, Yu.N., Golikov, N.I., Sidorov, M.M., Maksimova, E.M., Semyonov, S.V., Perovskaya, M.V., Poiskovye issledovaniya povysheniya nadezhnosti svarnykh metallokonstruktsy otvetstvennogo naznacheniya, ekspluatiruemykh v usloviyakh Severa [Exploratory research to improve the reliability of welded metal structures for responsible purposes operated in the North], Obrabotka metallov (tekhnolo giya, oborudovanie, instrumenty), 2017, No 4 (77), pp. 30–42.
22. Saraev, Yu.N., Impulsnye tekhnologicheskie protsessy svarki i naplavki [Pulse welding and surfacing processes], Novosibirsk: Nauka, 1994.
23. Saraev, Yu.N., Lunev, A.G., Kiselev, A.S., Gordynets, A.S., Trigub, M.V., Kompleks dlya issledovaniya processov teplomassoperenosa pri dugovoj svarke [Complex for the study of heat and mass transfer processes in arc welding], Avtomaticheskaya svarka, 2018, No 8, pp. 1–8.
24. Saraev, Yu.N., Lunev, A.G., Semenchuk, V.M., Nepomnyashchij, A.S., Kineticheskie osobennosti teplomassoperenosa v usloviyakh svarki i naplavki [Kinetic features of heat and mass transfer in welding and surfacing conditions], Izvestiya vuzov. Fizika, 2019, V. 62, No 9 (741), pp. 34–40.
25. Saraev, Y.N., Lunev, A.G., Semenchuk, V.M., Nepomnyashchy, A.S., Heat and mass transfer kinetics in arc welding process, Russian Physics Journal, 2020, V. 62, No 9, pp. 1573–1579.
26. Saraev, Y.N., Lunev, A.G., Perovskaya, M.V., Semenchuk, V.M., Gladkovsky, S.V., Features of formation of structure and physical and mechanical properties of permanent welded joints of low-alloy steels by methods of adaptive pulse control of energy parameters of welding mode, Materials Science Forum, 2018, V. 938, pp. 124–131.
27. Saraev, Yu.N., Sorokin, M.S., Gladkovskij, S.V., Golikov, N.I., Sovershenstvovanie tekhnologii svarki i naplavki na osnove metodov adaptivnogo impulsnogo upravleniya energeticheskimi parametrami svarochnoi tekhniki invertornogo tipa, prednaznachennoi dlya proizvodstva i remonta konstruktsy otvetstvennogo naznacheniya v usloviyakh nizkikh klimaticheskikh temperatur [Improvement of welding and surfacing technologies based on methods of adaptive pulse control of energy parameters of inverter-type welding equipment designed for the production and repair of critical structures at low climatic temperatures], Sostoyanie i osnovnye napravleniya razvitiya svarochnogo proizvodstva GAZPROM: Summaries, VIII Otraslevoe soveshchanie, Moscow, 2016.
28. Lobanov, L.M., Kiryan, V.I., Knysh, V.V., Prokopenko, G.I., Povyshenie soprotivleniya ustalosti svarnykh soedinenii metallokonstruktsy vysokochastotnoi mekhanicheskoi prokovkoi [Increasing the fatigue resistance of welded joints of metal structures by high-frequency mechanical forging]: review, Avtomaticheskaya svarka, 2006, No 9, pp. 3–11.
29. Saraev, Yu.N., Kamantsev, I.S., Kuznetsov, A . V. , Grigorieva, A.A., Semen - chuk, V.M . , Nepomnyashchy, A.S., Chislennaya otsenka ustalostnogo razrusheniya svarnykh soedinenii, poluchennykh dugovoi svarkoi s upravlyaemym i neupravlyaemym perenosom teplovlozheniem i udarno-mekhanicheskoi obrabotkoi [Numerical evaluation of fatigue failure of welded joints obtained by arc welding with controlled and uncontrolled transfer of heat input and impact machining], Fizicheskaya mezomekhanika. Materialy s mnogourovnevoi ierarkhicheski organizovannoi strukturoi i intellektualnye proizvodstvennye tekhnologii, Tomsk, 2021, pp. 275–276.
30. Liu, C., Bhole, S.D., Challenges and developments in pipeline weldability and mechanical properties, Science and Technology of Welding and Joining, 2013, V. 18, Is. 2, pp. 169–181.
31. Saraev, Yu.N., Kamantsev, I.S., Perovskaya, M.V., Kuznetsov, A.V., Semenchuk, V.M., Nepomnyashchy, A.S., To the Estimation of Welded Joint Fatigue Fracture, Mechanics, Resource and Diagnostics of Materials and Structures (MRDMS-2020), AIP Conf. Proc. 2315, 040031-1– 040031-4. URL: https://doi.org/10.1063/5.0037091, Published by AIP Publishing. 978-0-7354-4057-9
32. Gorbach, V.D., Suzdalev, I.V., Kisilevsky, F.N., Povyshenie kachestva i nadezhnosti svarnykh konstruktsy putem adaptivnogo upravleniya tekhnologicheskim protsessom svarki [Improving the quality and reliability of welded structures through adaptive control of the welding process], Sudostroenie, 2002, No 1, pp. 46–48.
33. Shiga, C., Problems in welded joints and systematic approach to their s solution in STX21 project, Science and Technology of Welding and Joining, 2000, V. 5, Is. 6, pp. 356–364.
34. Zenitani, S., Hayakawa, N., Yamamoto, J., Hiraoka, K., Morikage, Y., Kubo, T., Ya suda, K., Amano, T., Development of new Low Transformation-Temperature welding consumable to prevent cold cracking in high strength steel welds, Proceedings of 2002 Symposium for Welded Structures of the Japan Welding Societ, Osaka, 2002, pp. 346–353.
Review
For citations:
Saraev Yu.N., Gorbach V.D., Golikov N.I. Methodology for improving technologies for production and repair of ship structures based on the integrated use of modern technologies, energy sources and welding materials. Voprosy Materialovedeniya. 2025;(1(121)):135-151. (In Russ.) https://doi.org/10.22349/1994-6716-2025-121-1-135-151