

Computational and experimental research of temperature fields when surfacing on a titanium pseudo-β-alloy
https://doi.org/10.22349/1994-6716-2025-121-1-152-163
Abstract
The temperature cycle in the welding of near-β-titanium alloys has an effect on the final characteristics of the welded joint in connection with the possibility of forming an enlarged low-plastic state of individual zones. In order to prevent the occurrence of adverse thermal effects on the metal of the structure, welding through pre-surfacing is often used. In this regard, the problem arises of experimental and computational study of the distribution of the temperature field in the process of welding titanium near-β-alloy through surfacing of various thickness. The ANSYS Workbench software product was used for the calculated welding simulation. Comparison of experimental and calculated results showed a good coincidence of the distribution of temperature fields in the welded joint zone.
About the Authors
V. P. LeonovRussian Federation
Dr Sc. (Eng),
49 Shpalernaya St, 191015 St Petersburg
D. M. Nesterov
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
I. Yu. Sakharov
Russian Federation
Cand Sc. (Eng),
49 Shpalernaya St, 191015 St Petersburg
S. V. Kuznetsov
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
References
1. Timofeev, M.N., et al., Opyt primeneniya materialov i tekhnologiy svarki i naplavki pri stroitelstve korpusov reaktornykh ustanovok RITM-200 universalnykh atomnykh ledokolov proekta 22220 [Experience in the application of welding and surfacing materials and technologies in the construction of the RITM-200 reactor plant housings for universal nuclear icebreakers of project 22220]: Proceedings of the Krylov State Scientific Center, 2023, No 406, V. 4, pp. 77–86.
2. Levchenko, A.M., Kniga lektsy po svarke v Politekhnicheskom universitete Petra Velikogo [A book of lectures on welding at Peter the Great Polytechnic University], St Petersburg: Izd-vo Politekhnicheskogo universiteta, 2015.
3. Lukyanov, S.I., Boikov, N.P., Sergeeva, E.V., Perspektivnye vidy svarki dlya aviatsionnoi i kosmicheskoi otrasli [Promising types of welding for the aviation and space industry], Aktualnye problemy aviatsii i kosmonavtiki. Svarka letatelnykh apparatov i rodstvennye tekhnologii, 2020, V. 1, pp. 471–473.
4. Gorynin, I.V., et al., Titanovye splavy dlya morskoi tekhniki [Titanium alloys for marine equipment], St Petersburg: Politekhnika, 2007.
5. Kozlova, I.R., Vliyanie termicheskoi obrabotki na formirovanie struktury i uroven mekhanicheskikh svoistv vysokolegirovannogo splava titana [The effect of heat treatment on the formation of the structure and the level of mechanical properties of a high-alloy titanium alloy], Voprosy Materialovedeniya, 2019, No 4 (100), pp. 28–41.
6. Patent RU 2690257 C1: Splav na osnove titana [Titanium-based alloy], Kovalchuk, M.V., Oryshchenko, A.S., Leonov, V.P., Applied 28.11.2018, Publ. 31.05.2019.
7. Oryshchenko, A.S., et al., Osobennosti primeneniya titanovoi svarochnoi provoloki pri izgotovlenii konstruktsy morskoi tekhniki [Features of titanium welding wire application in the manufacture of marine engineering structures], Tekhnologiya legkikh splavov, 2021, No 2, pp. 59–62.
8. Leonov, V.P., Margolin, B.Z., Zlochevsky, A.B., Raspredelenie ostatochnykh napryazheny v elementakh obolochechnykh konstruktsy posle mnogosloinoi svarki i gidravlicheskikh ispytany [Distribution of residual stresses in shell structural elements after multilayer welding and hydraulic testing], Avtomaticheskaya svarka, 1987, No 4, pp. 11–16.
9. Metodika opredeleniya teplo- i temperaturoprovodnosti konstruktsionnykh materialov metodom lazernoi vspyshki [A method for determining the thermal and thermal conductivity of structural materials using a laser flash], MVI No 10-2/41-2017/3.2.1, CRISM Prometey, 2017.
10. Metodika opredeleniya teploemkosti konstruktsionnykh materialov metodom lazernoi vspyshki [The method of determining the heat capacity of structural materials by the laser flash method], MVI No 11-2/41-2017/3.2.1, CRISM Prometey, 2017.
11. Nerovny, V.M., Teoriya svarochnykh protsessov [Theory of welding processes], Moscow: MGTU im. N.E. Baumana, 2016.
12. Pokrovsky, A.M., Avagimov, S.S., Dubovitsky, E.I., Raschet ekspluatatsionnykh napryazheny v magistralnom nefteprovode s uchetom ostatochnykh svarochnykh napryazheny [Calculation of operational stresses in the main oil pipeline, taking into account residual welding stresses], Nauka i obrazovanie, 2016, No 9, pp. 123–137.
13. Frolov, A.V., et al., Modelirovanie napryazhenno-deformirovannogo sostoyaniya svarnykh soedineny v ANSYS Mechanical [Modeling of the stress-strain state of welded joints in ANSYS Mechanical], Izvestiya TulGU. Tekhnicheskie nauki, 2022, No 11, pp. 61–75.
14. Leonov, V.P., Lyudmirsky, Yu.G., Assaulenko, S.S., Povyshenie dolgovechnosti svarnykh stykovykh soedineny, rabotayushchikh pri tsiklicheskikh nagruzkakh v dvuosnom pole napryazheny [Improving the durability of welded butt joints operating under cyclic loads in a biaxial stress field], Advanced Engineering Research, 2022, No 3, V. 22, pp. 232–241.
15. Parshin, S.G., Nesterov, D.M., Pogruzhnoi mekhanizm podachi provoloki dlya podvodnoi svarki v vodnoi srede [Submersible wire feeding mechanism for underwater welding in an aquatic environment], St Petersburg: Izd-vo Politekhn. universiteta, 2015, pp. 62–64.
16. Kolokolov, E.I., Tomilin, S.A., Shishov, V.V., Obespechenie konstruktivnoi prochnosti svarnykh soedineny reaktornykh ustanovok posredstvom primeneniya novykh svarochnykh materialov i tekhnologii [Ensuring the structural strength of welded joints of reactor installations through the use of new welding materials and technologies], Globalnaya yadernaya bezopasnost, 2017, No 24, V. 3, pp. 1–14.
Review
For citations:
Leonov V.P., Nesterov D.M., Sakharov I.Yu., Kuznetsov S.V. Computational and experimental research of temperature fields when surfacing on a titanium pseudo-β-alloy. Voprosy Materialovedeniya. 2025;(1(121)):152-163. (In Russ.) https://doi.org/10.22349/1994-6716-2025-121-1-152-163