Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Computational and experimental research of temperature fields when surfacing on a titanium pseudo-β-alloy

https://doi.org/10.22349/1994-6716-2025-121-1-152-163

Abstract

The temperature cycle in the welding of near-β-titanium alloys has an effect on the final characteristics of the welded joint in connection with the possibility of forming an enlarged low-plastic state of individual zones. In order to prevent the occurrence of adverse thermal effects on the metal of the structure, welding through pre-surfacing is often used. In this regard, the problem arises of experimental and computational study of the distribution of the temperature field in the process of welding titanium near-β-alloy through surfacing of various thickness. The ANSYS Workbench software product was used for the calculated welding simulation. Comparison of experimental and calculated results showed a good coincidence of the distribution of temperature fields in the welded joint zone.

About the Authors

V. P. Leonov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc. (Eng),

49 Shpalernaya St, 191015 St Petersburg



D. M. Nesterov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



I. Yu. Sakharov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng),

49 Shpalernaya St, 191015 St Petersburg



S. V. Kuznetsov
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

49 Shpalernaya St, 191015 St Petersburg



References

1. Timofeev, M.N., et al., Opyt primeneniya materialov i tekhnologiy svarki i naplavki pri stroitelstve korpusov reaktornykh ustanovok RITM-200 universalnykh atomnykh ledokolov proekta 22220 [Experience in the application of welding and surfacing materials and technologies in the construction of the RITM-200 reactor plant housings for universal nuclear icebreakers of project 22220]: Proceedings of the Krylov State Scientific Center, 2023, No 406, V. 4, pp. 77–86.

2. Levchenko, A.M., Kniga lektsy po svarke v Politekhnicheskom universitete Petra Velikogo [A book of lectures on welding at Peter the Great Polytechnic University], St Petersburg: Izd-vo Politekhnicheskogo universiteta, 2015.

3. Lukyanov, S.I., Boikov, N.P., Sergeeva, E.V., Perspektivnye vidy svarki dlya aviatsionnoi i kosmicheskoi otrasli [Promising types of welding for the aviation and space industry], Aktualnye problemy aviatsii i kosmonavtiki. Svarka letatelnykh apparatov i rodstvennye tekhnologii, 2020, V. 1, pp. 471–473.

4. Gorynin, I.V., et al., Titanovye splavy dlya morskoi tekhniki [Titanium alloys for marine equipment], St Petersburg: Politekhnika, 2007.

5. Kozlova, I.R., Vliyanie termicheskoi obrabotki na formirovanie struktury i uroven mekhanicheskikh svoistv vysokolegirovannogo splava titana [The effect of heat treatment on the formation of the structure and the level of mechanical properties of a high-alloy titanium alloy], Voprosy Materialovedeniya, 2019, No 4 (100), pp. 28–41.

6. Patent RU 2690257 C1: Splav na osnove titana [Titanium-based alloy], Kovalchuk, M.V., Oryshchenko, A.S., Leonov, V.P., Applied 28.11.2018, Publ. 31.05.2019.

7. Oryshchenko, A.S., et al., Osobennosti primeneniya titanovoi svarochnoi provoloki pri izgotovlenii konstruktsy morskoi tekhniki [Features of titanium welding wire application in the manufacture of marine engineering structures], Tekhnologiya legkikh splavov, 2021, No 2, pp. 59–62.

8. Leonov, V.P., Margolin, B.Z., Zlochevsky, A.B., Raspredelenie ostatochnykh napryazheny v elementakh obolochechnykh konstruktsy posle mnogosloinoi svarki i gidravlicheskikh ispytany [Distribution of residual stresses in shell structural elements after multilayer welding and hydraulic testing], Avtomaticheskaya svarka, 1987, No 4, pp. 11–16.

9. Metodika opredeleniya teplo- i temperaturoprovodnosti konstruktsionnykh materialov metodom lazernoi vspyshki [A method for determining the thermal and thermal conductivity of structural materials using a laser flash], MVI No 10-2/41-2017/3.2.1, CRISM Prometey, 2017.

10. Metodika opredeleniya teploemkosti konstruktsionnykh materialov metodom lazernoi vspyshki [The method of determining the heat capacity of structural materials by the laser flash method], MVI No 11-2/41-2017/3.2.1, CRISM Prometey, 2017.

11. Nerovny, V.M., Teoriya svarochnykh protsessov [Theory of welding processes], Moscow: MGTU im. N.E. Baumana, 2016.

12. Pokrovsky, A.M., Avagimov, S.S., Dubovitsky, E.I., Raschet ekspluatatsionnykh napryazheny v magistralnom nefteprovode s uchetom ostatochnykh svarochnykh napryazheny [Calculation of operational stresses in the main oil pipeline, taking into account residual welding stresses], Nauka i obrazovanie, 2016, No 9, pp. 123–137.

13. Frolov, A.V., et al., Modelirovanie napryazhenno-deformirovannogo sostoyaniya svarnykh soedineny v ANSYS Mechanical [Modeling of the stress-strain state of welded joints in ANSYS Mechanical], Izvestiya TulGU. Tekhnicheskie nauki, 2022, No 11, pp. 61–75.

14. Leonov, V.P., Lyudmirsky, Yu.G., Assaulenko, S.S., Povyshenie dolgovechnosti svarnykh stykovykh soedineny, rabotayushchikh pri tsiklicheskikh nagruzkakh v dvuosnom pole napryazheny [Improving the durability of welded butt joints operating under cyclic loads in a biaxial stress field], Advanced Engineering Research, 2022, No 3, V. 22, pp. 232–241.

15. Parshin, S.G., Nesterov, D.M., Pogruzhnoi mekhanizm podachi provoloki dlya podvodnoi svarki v vodnoi srede [Submersible wire feeding mechanism for underwater welding in an aquatic environment], St Petersburg: Izd-vo Politekhn. universiteta, 2015, pp. 62–64.

16. Kolokolov, E.I., Tomilin, S.A., Shishov, V.V., Obespechenie konstruktivnoi prochnosti svarnykh soedineny reaktornykh ustanovok posredstvom primeneniya novykh svarochnykh materialov i tekhnologii [Ensuring the structural strength of welded joints of reactor installations through the use of new welding materials and technologies], Globalnaya yadernaya bezopasnost, 2017, No 24, V. 3, pp. 1–14.


Review

For citations:


Leonov V.P., Nesterov D.M., Sakharov I.Yu., Kuznetsov S.V. Computational and experimental research of temperature fields when surfacing on a titanium pseudo-β-alloy. Voprosy Materialovedeniya. 2025;(1(121)):152-163. (In Russ.) https://doi.org/10.22349/1994-6716-2025-121-1-152-163

Views: 12


ISSN 1994-6716 (Print)