

Effect of long climatic aging on microstructure and fracture features of epoxy сarbon-fiber-reinforced plastics under bending and compression load
https://doi.org/10.22349/1994-6716-2018-96-4-170-184
Abstract
The paper describes results of microstructural and fractographic research of fracture features for epoxy carbon-fiber-reinforced plastics under static bend and compression load after long (till 5 years) climatic aging in different climatic zones of Russia (industrial zone of temperate climate of Moscow – MTsKI; temperate warm climate of Gelendzhik – GTsKI; warm humid climate of Sochi – GNIP, Russian Academy of Sciences). Changes of microstructure and main types of destruction in the volume of carbon fiber reinforced plastics have been established. It is shown that changes of structure and torsion nature of fracture in volume epoxy carbon-fiber-reinforced plastics are typical for all zones of climatic aging and are defined by processes of complex manifestation of mechanical stresses and chemical destruction of materials.
Keywords
About the Authors
I. S. DeevRussian Federation
Cand Sc. (Eng)
17, Radio St, 105005 Moscow
E. V. Kurshev
Russian Federation
17, Radio St, 105005 Moscow
S. L. Lonsky
Russian Federation
17, Radio St, 105005 Moscow
O. A. Komarova
Russian Federation
17, Radio St, 105005 Moscow
References
1. Kablov, E.N., Innovatsionnye razrabotki VIAM po realizatsii “Strategicheskikh napravlenii razvitiya materialov i tekhnologii ikh pererabotki na period do 2030 goda” [Innovate developments of the AllRussian Scientific Research Institute of Aviation Materials within the project “Strategic development of materials and technologies of their recycling until 2030”], Aviatsionnye Materialy i Tekhnologii, 2015, No 1 (34), pp. 3–33, DOI: 10.18577/2071-9140-2015-0-1-3-33.
2. Kablov, E.N., Tendentsii i orientiry innovatsionnogo razvitiya Rossii [Trends and marks of innovate development in Russia], Compilation of Scientific Information Materials, Moscow: VIAM, 2015, V. 3, p. 720.
3. Kablov, E.N., Rossii nuzhny materialy novogo pokoleniya [Russia needs new generation materials], Redkie Zemli, 2014, No 3, pp. 8–13.
4. Kablov, E.N., Materialy i khimicheskie tekhnologii dlya aviatsionnoi tekhniki [Materials and chemical technologies for aircraft], Vestnik RAN, 2012, V. 82, No 6, pp. 520–530.
5. Kablov, E.N., Deev, I.S., Efimov, V.A., Kavun, N.S., Kobets, L.P., Nikis h in, E.F., Vliyanie atmosfernykh faktorov i mekhanicheskikh napryazhenii na mikrostrukturnye osobennosti razrushcheniya polimernykh kompozitsionnykh materialov [Influence of atmospheric factors and mechanical tensions on microstructure features of polymeric composite materials destruction], Compilation of VII scientific Gidroaviasalon-2008 conference reports, Part 1, Moscow: VIAM, 2008, pp. 279–286.
6. Kablov, E.N., Startsev, O.V., Krotov, A.S., Kirillov, V.N., Klimaticheskoe starenie kompozitsionnykh materialov aviatsionnogo naznacheniya. III. Znachimye factory stareniya [Climatic aging of composite materials for aviation. III. Significant factors of aging], Deformatsiya i Razrushenie Materialov, 2011, No 1, pp. 34–40.
7. Startsev, O.V., Vapirov, Yu.M., Yartsev, V.A., Krivonos, V.V., Mitrofanov a, E.A., Chubarova, M.A., Deev, I.S., Vliyanie dlitelnogo atmosfernogo stareniya na svoistva i strukturu ugleplastika [Influence of prolonged atmospheric aging on properties and structure of carbon fiber], Mekhanika Kompozitnykh Materialov, 1986, No 4, pp. 636–642.
8. Voinov, S.I., Zhelezina, G.F., Solov’eva, N.A., Yamshchikova, G.A., Timos h in a, L.N., Vliyanie vneshnei sredy na svoistva ugleplastika, poluchennogo metodom propitki pod davleniem (RTM) [Influence of external environment on carbon fiber properties obtained by impregnation under pressure (RTM)], Trudy VIAM, 2015, No 2, Art. 10, URL:http://www.viam-works.ru, (reference date 05/10/2016), DOI:10.18577/2307-6046-2015-0-2-7-7.
9. Kenig, S., Moshonov, A., Shucrun, A., Marom, G., Environmental effects on shear delamination of fabric-reinforced epoxy composites, Int. J. Adgesion and Adgesives, 1989, V. 9, No 1, pp. 109–124.
10. Gulyaev, I.N., Zelenina, I.V., Valevin, E.O., Shvedkova, A.K., Issledovanie vliyaniya povyshennoi temperatury i vlazhnostina svoistva termostoikikh ugleplastikov [Researching of influence of increased temperature and humidity on properties of thermal-resistant carbon fibers], Konstruktsii iz Kompozitsionnykh Materialov, 2015, No 3, pp. 55–59.
11. Kirillov, V.N., Vapirov, Yu.M., Drozd, E.A., Issledovanie atmosfernoi stoikosti polimernykh kompozitsionnykh materialov v usloviyakh atmosfery teplogo vlazhnogo i umerennoteplogo klimata [Researching of atmospheric durability of polymeric composite materials in warm, wet and moderately warm climate conditions], Aviatsionnye Materialy i Tekhnologii, 2012, No 4, pp. 31–38.
12. Efimov, V.A., Startsev, O.V., Issledovanie klimaticheskoi stoikosti polimernykh materialov. Problemy i puti ikh resheniya[Researching of climatic durability of polymeric materials. Problems and its solutions], Aviatsionnye Materialy i Tekhnologii, 2012, No S, pp. 412–422.
13. Startsev, O.V., Meletov, V.P., Deev, I.S., Tsintsadze, G.B., Bazenkova, E.N., Perov, B.V., Atmosfernoe starenie armirovannykh termoplastov[Atmospheric aging of reinforced thermoplastic], Voprosy Aviatsionnoi Nauki i Tekhniki, Moscow: VIAM, 1990, pp. 52–58.
14. Ray, B., Temperature effect during humid ageing on interfaces of glass and carbon fibers reinforced epoxy composites, Journal of colloid and interface science, 2006, V. 298, pp. 111–117.
15. Nakamura, T., Singh, R., Vaddadi, P., Effects of environmental degradation on flexural failure strength of fiber reinforced composites, Experimental mechanics, 2006, V. 46, pp. 257–268.
16. Kolesnik, K.A., Modelirovanie vlagonasyshcheniya polimernykh kompozitov v realnykh klimaticheskikh usloviyakh [Modeling of moisture saturation o polymeric composites in real climatic conditions], Aviatsionnye Materialy i Tekhnologii, 2017, No 4 (49), pp. 77–86.
17. Kablov, E.N., Startsev, O.V., Inozemtsev, A.A., Vlagonasyshchenie konstruktivnopodobnykh elementov iz polimernykh kompozitsionnykh materialov v otkrytykh klimatitcheskikh usloviyakh s nalozheniem termotsiklov [Moisture saturation o constructive-like elements made of polymeric composite materials in open climatic conditionswith overlay ofthermal cycle], Aviatsionnye Materialy i Tekhnologii, 2017, No 2 (47), pp. 56–68.
18. Birger, S., Moshonov, A., Kenig, S., The effects of thermal and hydrothermal ageing on the failure mechanisms of graphite – fabric epoxy composites subjected to flexural loading, Composites, 1989, V. 20, No 4, pp. 341–348.
19. Cowley, K.D., Beaumont, P.W.R., Damage accumulation at notches and the fracture stress of carbon-fiber/polymer composites: combined effects of stress and temperature, Composites science and technology, 1997. V. 57, No 9–10, pp. 1211–1219.
20. Bibo, G.A., Hogg, P.J., Kemp, M., Mechanicalcharacterization of glass-and carbon-fibrereinforced composites made with non-crimp fabrics, Composites science and technology, 1997, V. 57, No 9– 10, pp. 1221–1241.
21. Deev, I.S., Dobryanskaya, O.A., Kurshev, E.V., Vliyanie morskoi vody na mikrostrukturu i mekhanicheskie svoistva ugleplastika v napryazhennom sostoyanii[Influence of seawater on microstructure and mechanical properties of tensed carbon fiber], Materialovedenie, 2012, No 11, pp. 37–41.
22. Deev, I.S., Kurshev, E.V., Lonsky, S.L., Zhelezina, G.F., Vliyanie dlitelnogo klimaticheskogo stareniya na mikrostrukturu poverkhnosti epoksidnykh organoplastikov i kharakter ee razrusheniya v usloviyakh izgiba[Influence of prolonged climatic aging on microstructure of epoxide organic plastics surface and character of its bend destruction], VoprosyMaterialovedeniya, 2016, No 3 (87), pp. 104–114.
23. Deev, I.S., Kurshev, E.V., Lonsky, S.L., Zhelezina, G.F., Vliyanie dlitelnogo klimaticheskogo stareniya na mikrostrukturu i kharakterrazrusheniya v obeme epoksidnykh organoplastikov v usloviyakh silovogo vozdeistviya (izgiba i szhatiya) [Influence of prolonged climatic aging on microstructure and destruction in scope of epoxide organic plastics in conditions of forcing (bending and compression)], VoprosyMaterialovedeniya, 2016, No 4 (88), pp. 72–82.
24. Deev, I.S., Kurshev, E.V., Lonsky, S.L., Vliyanie dlitelnogo klimaticheskogo stareniya na mikrostrukturu i kharakter razrusheniya epoksidnykh stekloplastikov v usloviyakh izgiba [Influence of prolonged climatic aging on microstructure and destruction of epoxide glass fibers in bending conditions], Voprosy Materialovedeniya, 2017, No 2 (90), pp. 166–178.
25. Kirillov, V.N., Efimov, V.A., Shvedkova, A.K., Nikolaev, E.V., Issledovanie vliyaniya klimaticheskikh faktorov i mekhanicheskogo nagruzheniya na strukturu i mekhanicheskie svoistva PKM [Researching of influence of climatic factors and mechanical loading on structure and mechanical properties of PCM], Aviatsionnye Materialy i Tekhnologii, 2011, No 4, pp. 41–45.
26. Deev, I.S., Kobets, L.P., Issledovanie mikrostruktury i osobennostei razrusheniya epoksidnykh polimerov i kompozitsionnykh materialov na ikh osnove. Chast 1 [Researching of microstructure and features of destruction of epoxide polymers and composite materials on its base. Part I], Materialovedenie, 2010, No 5, pp. 8–16.
27. Deev, I.S., Kobets, L.P., Issledovanie mikrostruktury i osobennostei razrusheniya epoksidnykh polimerov i kompozitsionnykh materialov na ikh osnove. Chast 2 [Researching of microstructure and features of destruction of epoxide polymers and composite materials on its based. Part II], Materialovedenie, 2010, No 6, pp. 13–18.
28. Deev, I. S., Belov, P. A., Kobets, L. P., Eksperimentalnye neklassicheskie effekty kak fundament teorii torsionov v mekhanike razrusheniya polimernykh kompozitov [Experimental non-classic effects as the basis of torsion theory in mechanic of polymeric composites destruction], Kompozity i Nanosruktury, 2015, V. 7, No 2, pp. 2–13.
29. Deev, I.S., Kurshev, E.V., Lonsky, S.L., Vliyanie dlitelnogo klimaticheskogo stareniya na mikrostrukturu poverkhnosti epoksidnykh ugleplastikov [Influence of prolonged climatic aging on microstructure of surface of epoxide carbon fibers], VoprosyMaterialovedeniya, 2018, No 3 (95), pp. 157–169.
30. Deev, I.S., Kobets, L.P., Mikrostruktura epoksidnykh matrits. [Microstructure of epoxide matrices], Mekhanika kompozitnykh materialov, 1986, No 1, pp. 3–8.
31. Deev, I.S., Kobets, L.P., Issledovanie mikrostruktury i mikropolei deformatsii v polimernykh kompozitakh metodom rastrovoi elektronnoi mikroskopii [Researching of microstructure and microfields of deformation in polymeric composites by raster electric microscopy], Zavodskaya Laboratoriya. Diagnostika Materialov, 1999, V. 65, No 4, pp. 27–34.
32. Deev, I.S., Kablov, E.N., Kobets, L.P., Chursova, L.V., Issledovanie metodom skaniruyushchei elektronnoi mikroskopii deformatsii mikrofazovoi struktury polimernykh matrits pri mekhanicheskom nagruzhenii [Researching by scanning electric microscopy ofdeformation of microphase structure of polymeric matrices at mechanical loading], Trudy VIAM, 2014, No 7, Art. 06, URL: http://www.viam-works.ru (accessed October 5, 2016), DOI: 10.18577/2307-6046-2014-0-7-6-6.
33. Deev, I.S., Gunyaeva, A.G., Nekotorye effekty protsessa nanostrukturirovaniya termoreaktivnykh matrits [Some effects of thermoset matrices nanostructuring process], Kompozity i Nanostruktury, 2017, V. 9, No 3–4 (35–36), pp. 63–74.
Review
For citations:
Deev I.S., Kurshev E.V., Lonsky S.L., Komarova O.A. Effect of long climatic aging on microstructure and fracture features of epoxy сarbon-fiber-reinforced plastics under bending and compression load. Voprosy Materialovedeniya. 2018;(4(96)):170-184. (In Russ.) https://doi.org/10.22349/1994-6716-2018-96-4-170-184