

Microstructure and hardness of hot-rolled structural chromium steel after various types of spheroidizing annealing
https://doi.org/10.22349/1994-6716-2025-122-2-26-34
Abstract
The paper presents the comparable study of changes in hardness and microstructure of the 0.35Cr hot rolled chromium steel after isothermal and cycle annealing. After conducting the experiment, temperature modes of such annealing have been provided to meet additional requirements to hardness and depth of the decarburized layer according to National Standard GOST 4543–71. The advantage of the developed cycle annealing with soaking above the Ас3 critical point in terms of temperature-and-rate conditions of cooling at the final cycle for formation of the uniform structure of granular pearlite and spheroidization of the carbide phase along the entire area of studied samples is demonstrated.
About the Authors
I. D. PospelovRussian Federation
Cand Sc. (Eng)
D. V. Matveeva
Russian Federation
References
1. GOST 4543–2016: Structural alloy steel products. Specifications [Metal products made of structural alloy steel. Technical specifications].
2. Xie, H., Du , L., Hu , J., Misra, R., Microstructure and mechanical properties of a novel 1000 MPa grade TMCP low carbon microalloyed steel with combination of high strength and excellent toughness, Materials science and engineering, 2014, V. 612, pp. 123–130. URL: https://doi.org/10.1016/j.msea.2014.06.033
3. Bandyopadhyay, P.S., Ghosh, S.K., Kundu, S., Chatterjee, S., Evolution of microstructure and mechanical properties of thermomechanically processed ultrahigh-strength steel, Metallurgical and materials transactions, 2011, V. 42, pp. 2742–2752. URL: https://doi.org/10.1007/s11661-011-0711-2
4. Kaijalainen , A., Hannula, J., Somani, M., Kömi, J., Influence of chromium content on the mechanical properties and HAZ simulations of low-carbon bainitic steels, Proceedings of the 28th International Conference on Metallurgy and Materials, 2019, pp. 520–525. URL: https://doi.org/10.37904/metal.2019.712
5. Zhou , J., Yu , Z., Chen , J., Wu , S., Wu , K., Pan , L., The Performance of niobium-microalloying ultra-high-strength bridge cable steel during hot rolling, Materials, 2024, V. 17 (6), p. 1259.URL: https://doi.org/10.3390/ma17061259
6. Matrosov, M.Yu., Efron, L.I., Kichkina, A.A., Lyasotsky, I.V., Issledovanie mikrostruktury mikrolegirovannoi niobiem trubnoi stali posle razlichnykh rezhimov kontroliruemoi prokatki s uskorennym okhlazhdeniem [Study of the microstructure of pipe steel microalloyed with Nb after different modes of controlled rolling with accelerated cooling], Metallovedenie i termicheskaya obrabotka metallov, 2008, No 3, pp. 44–49.
7. Javaheri, V., Khodaie, N., Kaijalainen , A., Porter, D., Effect of niobium and phase transformation temperature on the microstructure and texture of a novel 0.40% C thermomechanically processed steel, Materials Characterization, 2018, V. 142, pp. 295–308. URL: https://doi.org/10.1016/j.matchar.2018.05.056
8. Rancel, L., Gómez, M., Medina, S. F., Influence of microalloying elements (Nb, V, Ti) on yield strength in bainitic steels, Steel research international, 2008, V. 79, pp. 947–953. URL: https://doi.org/10.2374/SRI08SP064
9. Xia, T., Ma, Y., Zhang ,Y., Li, J., Xu , H., Effect of Mo and Cr on the microstructure and properties of low-alloy wear-resistant steels, Materials, 2024, V. 17 (10), p. 2408. URL: https://doi.org/10.3390/ma17102408
10. Rodriguez-Galeano, K.F., Nutter, J., Azakli, Y., Slater, C., Rainforth, W.M. Influence of Cr and Cr+Nb on the interphase precipitation and mechanical properties of V–Mo microalloyed steels, Materials Science and Engineering: A, 2024, V. 893, p. 146140. URL: https://doi.org/10.1016/j.msea.2024.146140
11. Garber, E.A., Pospelov, I.D., Kozhevnikova, I.A., Vliyanie khimicheskogo sostava i uprugikh svoistv polosy i valkov na energosilovye parametry shirokopolosnykh stanov goryachei prokatki [Influence of practically chemical composition and elastic properties of strip and rolls on calculation accuracy of energy and force parameters in wide strip hot rolling mills], Proizvodstvo prokata, 2011, No 8, pp. 2–7.
12. Bernshtein, M.L., Struktura deformirovannykh metallov [The structure of deformed metals], Moscow: Metallurgiya Publ., 1977.
13. Rudskoi, A.I., Lunev V.A., Teoriya i tekhnologiya prokatnogo proizvodstva [Theory and technology of rolling production], St Petersburg: Nauka Publ., 2005. ISBN 5-02-025065-1
14. Zhu , S., Zhen , X., Wang , G., Ma, C., Cao , C., Effect of SCM435 initial microstructure and annealing process on spheroidization grade and properties, Vibroengineering PROCEDIA, 2023, V. 48, pp. 61–66. URL: https://doi.org/10.21595/vp.2022.23091
15. Inam, A., Brydson, R., Edmonds, D.V., Effect of starting microstructure upon the nucleation sites and distribution of graphite particles during a graphitising anneal of an experimental medium-carbon machining steel, Materials Characterization, 2015, V. 106, pp. 86–92. URL: https://doi.org/10.1016/j.matchar.2015.05.014
16. Rounaghi, S.A., Kiani-Rashid , A.R., Study on graphitization acceleration during annealing of martensitic hypereutectoid steel, Phase Transitions, 2011, V. 84 (11–12), pp. 981–991. URL: https://doi.org/10.1080/01411594.2011.563153
17. Pospelov, I.D., Matveeva, D.V., Vliyanie izotermicheskogo otzhiga pered kholodnoi prokatkoi na mekhanicheskie svoistva zaevtektoidnoi stali dlya vysokoprochnykh kholodnokatanykh lent [The effect of isothermal annealing before cold rolling on the mechanical properties of hypereutectoid steel for high-strength cold-rolled strips], Metallovedenie i termicheskaya obrabotka metallov, 2024, No 10, pp. 26–31. URL: https://doi.org/10.30906/mitom.2024.10.26-31
18. Pospelov, I.D., Matveeva, D.V., Research of the mechanical properties of steel U10A for the production of high-strength cold-rolled strips after cyclic annealing and plastic deformation, Basic Problems of Material Science, 2024, V. 21 (2), pp. 247–253. URL: https://doi.org/10.25712/ASTU.1811-1416.2024.02.013
19. Gauvin , M., Dutta, A., Lorenz, U., Duprez, L., Waterschoot, T., Micro- to nanoscale microstructural differences induced by intercritical annealing in a hot-rolled medium manganese steel, Steel research international, 2023, V. 94 (11), p. 2300032. URL: https://doi.org/10.1002/srin.202300032
20. Wang , Y., Ding , R., Franke, C., Li, T., Rong , X., Wen , P., Yang , Z., Chen , H., Flash annealing of a chemically heterogeneous medium Mn steel, Scripta Materialia, 2024, V. 242, p. 115923. URL: https://doi.org/10.1016/j.scriptamat.2023.115923
21. Rivolta, B., Gerosa, R., Panzeri, D., Piazza, L., Angelini, L., Alfonso, M., Bolognani, N., Panzeri, A., Parimbelli, A., S al a, C., Spheroidizing annealing of thermomechanically hot-rolled steel rods: influence of the prior microstructure on the mechanical characteristic and phase transformations, Ironmaking & steelmaking, 2022, V. 49 (7), pp. 716–725. URL: https://doi.org/10.1080/03019233.2022.2049582
22. Wang , H., Yuan , G., Lan , M., Microstructure and mechanical properties of a novel hot-rolled 4% Mn steel processed by intercritical annealing, Journal of materials science, 2018, V. 53 (17), pp. 12570–12582. URL: https://doi.org/10.1007/s10853-018-2512-0
23. Zhang , Y., Wang , J., Xie, Z., Microstructural Characteristics and tensile behavior of a hot-rolled medium-Mn steel (0.25C–8.5Mn–0.5Si–2.5Al) processed by intercritical annealing treatment, Journal of materials engineering and performance, 2020, V. 29, pp. 2623–2634. URL: https://doi.org/10.1007/s11665-020-04755-4
Review
For citations:
Pospelov I.D., Matveeva D.V. Microstructure and hardness of hot-rolled structural chromium steel after various types of spheroidizing annealing. Voprosy Materialovedeniya. 2025;(2(122)):26-34. (In Russ.) https://doi.org/10.22349/1994-6716-2025-122-2-26-34