

High-entropy magnetic alloy FexCo6Al3Ni2, produced by mechanical alloying and spark plasma sintering
https://doi.org/10.22349/1994-6716-2025-122-2-62-74
Abstract
In this work, a high-entropy alloy Fe<sup>x</sup>Co<sup>6</sup>Al<sup>3</sup>Ni<sup>2</sup>Si (where x = 5, 6, 8) was obtained by mechanical alloying. The microstructure, phase and granulometric compositions of the obtained powders were studied. The required specific energy dose for the formation of a homogeneous solid solution (D = 30 W⋅h/g) was determined. Using the CALPHAD method, a phase diagram was constructed for the multicomponent Fe<sup>x</sup>Co<sup>6</sup>Al<sup>3</sup>Ni<sup>2</sup>Si system. The Fe8Co6Al3Ni2Si alloy powder after mechanical alloying showed a saturation magnetization of 154 emu/g and a coercive force of 53 Oe. Compact samples were obtained from the Fe<sup>x</sup>Co<sup>6</sup>Al<sup>3</sup>Ni<sup>2</sup>Si alloy powder in a spark plasma sintering installation and annealed at temperatures of 900, 950 and 1000°C. The microstructure and phase composition of the samples after annealing were studied. Tests of magnetic properties of samples showed that the saturation magnetization of samples ranged from 159 to 168 emu/g, coercive force – from 8.9 to 29.2 Oe. Compressive strength of samples ranged from 2190 to 2680 MPa, and microhardness – from 681 to 811 HV.
About the Authors
A. E. KimRussian Federation
29 Polytechnicheskaya St, 195251 St Petersburg
A. K. Mazeeva
Russian Federation
Cand. Sc. (Eng)
29 Polytechnicheskaya St, 195251 St Petersburg
N. G. Razumov
Russian Federation
Dr Sc. (Eng)
29 Polytechnicheskaya St, 195251 St Petersburg
E. V. Volokitina
Russian Federation
29 Polytechnicheskaya St, 195251 St Petersburg
A. A. Popovich
Russian Federation
Dr Sc. (Eng)
29 Polytechnicheskaya St, 195251 St Petersburg
References
1. Malaya, E . V. , Reshenkin, A.S., Goncharov, R.A., Vorobiev, S.S., Svoistva poroshkovykh kompozitsionnykh magnitomyagkikh materialov elektrotekhnicheskogo naznacheniya [Properties of powder composite soft magnetic materials for electrical appointment], Zagotovitelnye proizvodstva v mashino stroenii, 2024, No 5, pp. 45–48.
2. Semin, A.P., Gromov, V.E., Ivanov, Yu.F., Panin, S.V., Kolubaev, E.A., Litovchenko, I.Yu., Borovsky, S.V., Struktura i svoistva lenty magnitomyagkogo splava Fe-Co-Ni-Si-B, izgotovlennoy metodom spinningovaniya [Structure and properties of the Fe-Co-Ni-Si-B soft magnetic alloy tape manufactured by the spinning method], Fizicheskaya mezomekhanika, 2024, V. 27, No 5, pp. 63–70.
3. Sai Ram, B ., Paul, A.K., Kulkarni, S.V., Soft magnetic materials and their applications in transformers, J. Magn. Magn. Mater., 2021, V. 537, No 1, p. 168210. URL: https:// 10.1016/j.jmmm.2021.168210
4. Chekhunova, A .M . , Vliyanie termicheskoi obrabotki na magnitnye i mekhanicheskie svoistva stali 10KhSND [Effect of heat treatment on magnetic and mechanical properties of 10KhSND steel], Evraziisky soyuz uchenykh, 2015, No 12-5 (21), pp. 116–119.
5. Weir, G . , Leveneur, J , Long , N ., Magnetic susceptibility of soft magnetic composite materials, J. Magn. Magn. Mater., 2022, V. 551, No 1, p. 169103. URL: https://10.1016/j.jmmm.2022.169103
6. Ferraris, L., Franchini, F., Pošković, E., Actis Grande, M., Bidulský, R., Effect of the Temperature on the Magnetic and Energetic Properties of Soft Magnetic Composite Materials, Energies, 2021, V. 14, No 15, p. 4400. DOI: 10.3390/en14154400
7. Talaat, A., Suraj, M.V., Byerly, K., Wang, A., Wang, Y., Lee, J.K., Ohodnicki, P.R., Review on soft magnetic metal and inorganic oxide nanocomposites for power applications, Journal of Alloys and Compounds, 2021, V. 870, p. 159500. DOI: 10.1016/j.jallcom.2021.159500
8. Zeraati, M . , Feizabad , M . , Khayati, G . , An investigation of the magnetic, mechanical, and kinetic characteristics of CuCrFeTiNi high entropy alloy by mechanical alloying and spark plasma sintering, Journal of Alloys and Compounds, 2023, V. 958, p. 170347. DOI: 10.1016/j.jallcom.2023.170347
9. Lin, M., Zhao, R., Liao, Y. , Li, Y. , Zhang, X., Determining magnetic properties of high entropy alloys by molar volume difference predicted by machine learning, AIP Advances, 2024, V. 14, No 4, pp. 045204–045204-6. DOI: 10.1063/5.0165470
10. Tsai, M.-H., Physical Properties of High Entropy Alloys, Entropy, 2013, V. 15, No 12, pp. 5338–5345. DOI: 10.3390/e15125338
11. Kitagawa, J . , Shintakuin , D . , Magnetic Properties of High-Entropy Alloy FeCoNiTi // Materials Science and Engineering A, 2024, V. 9 (35), pp. 37197–37204. DOI: 10.1021/acsomega.4c04556
12. Zhao , R.-F., Ren , B., Zhang , G.-P., Liu , Z.-X., Cai, B., Zhang , J., CoCrxCuFeMnNi high-entropy alloy powders with superior soft magnetic properties, J. Magn. Magn. Mater., 2019, V. 491, p. 165574.
13. Zhu , J., Lv, M., Liu , C., Tan , X., Xu , H., Effect of neodymium and yttrium addition on microstructure and DC soft magnetic property of dual-phase FeCoNi(CuAl)0.8 high-entropy alloy, J. Rare Earths, 2023, V. 41, No 10, pp. 1562–1567.
14. Mazeeva, A.K., Kim, A., Shamshurin, A.I., Razumov, N.G., Nazarov, D.V., Bori s o v, A.N., P o p o vi c h , A.A., Effect of heat treatment on structure and magnetic properties of Ni36Co37Al27 alloy produced by laser powder bed fusion, J. Alloys Compd., 2023, V. 938, p. 168461.
15. Xiaohua Tan, X., Chen, L., Lv, M., Peng, W., Xu, H., Tailoring Mechanical and Magnetic Properties in Dual-Phase FeCoNi(CuAl)0.8 High-Entropy Alloy, Materials, 2023, V. 16 (22), p. 7222. DOI: 10.3390/ma16227222
16. Setia Budi, S., Sukro Muhab, S., Purwanto, A., Kurniawan, B., Manaf, A., Effect of the Electrodeposition Potential on the Magnetic Properties of FeCoNi Films, Materials Science-Poland, 2019, V. 37 (3), pp. 389–394. DOI: 10.2478/msp-2019-0044
17. Ouyang , G., Chen , X., Liang , Y.F., Macziewski, C., Cui, J., Review of Fe-6.5 wt% Si high silicon steel–A promising soft magnetic material for sub-kHz application, J. Magn. Magn. Mater., 2019, V. 481, 1 July, pp. 234–250. DOI: 10.1016/j.jmmm.2019.02.089
18. Xiaohua Tan, X., Li, J., Zhang, S., Xu, H., Enhanced DC and AC Soft Magnetic Properties of Fe-Co-Ni-Al-Si High-Entropy Alloys via Texture and Iron Segregation, J. Mater. Sci. Technol., 2024, V. 14 (10), p. 1113. DOI: 10.3390/met14101113
19. Feuerbacher, M., Lienig , T., Thomas , C., A single-phase bcc high-entropy alloy in the refractory Zr-Nb-Ti-V-Hf system, Scripta Materialia, 2018, V. 152, pp. 40–43. DOI: 10.1016/j.scriptamat.2018.04.009
20. Yang, T., Zhao, Y.L., Tong, Y., Jiao, Z.B., Wei, J., Cai, J.X., Han, X.D., Chen, D., Hu, A., Kai, J.J., Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science, 2018, V. 362, pp. 933–937. DOI: 10.1126/science.aas8815
21. Zhao , Y.J., Qiao, J.W., Ma, S.G., Gao , M.C., Yang , H.J., Chen , M.W., Zhang , Y., A hexagonal close-packed high-entropy alloy: the effect of entropy, Materials & Design, 2016, V. 96, pp. 10–15. DOI: 10.1016/j.matdes.2016.01.149
22. Lilensten, L., Couzinié, J.P., Perrière, L., Bourgon, J., Emery, N., Guillot, I., New structure in refractory high-entropy alloys, Materials Letters, 2014, V. 132, pp. 123–125. DOI: 10.1016/j.matlet.2014.06.064
23. Lu , L., Chen , X., Huang , X., Lu , K., Revealing the maximum strength in nanotwinned copper, Science, 2009, V. 323, pp. 607–610. DOI: 10.1126/science.1167641
24. Gao , M.C., Zhang , B., Guo , S.M., Qiao, J.W., Hawk , J.A., High-entropy alloys in hexagonal close-packed structure, Metallurgical and Materials Transactions A., 2016, V. 47, pp. 3322–3332. DOI: 10.1007/s11661-015-3091-1
Review
For citations:
Kim A.E., Mazeeva A.K., Razumov N.G., Volokitina E.V., Popovich A.A. High-entropy magnetic alloy FexCo6Al3Ni2, produced by mechanical alloying and spark plasma sintering. Voprosy Materialovedeniya. 2025;(2(122)):62-74. (In Russ.) https://doi.org/10.22349/1994-6716-2025-122-2-62-74