Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Study of the physical and mechanical properties of aluminum oxide filament based on polyethylene terephthalate glycol for FDM-printing

https://doi.org/10.22349/1994-6716-2025-122-2-99-109

Abstract

Fused deposition modeling (FDM) is one of the most common additive manufacturing technologies based on the extrusion of thermoplastic filament. The creation of composite materials for FDM-printing by introducing dispersed fillers into a thermoplastic matrix allows obtaining parts with the required set of characteristics. In this paper, an attempt was made to improve the wear resistance of PETG-based polymer composite materials (PCM) samples by modifying them with aluminum oxide micropowder. The optimal content of the modifying component was determined, thus ensuring the 3D-printing process and reducing the wear of such PCM.

About the Authors

S. A. Sidorova
MIREA – Russian Technological University
Russian Federation

78 Vernadsky Ave, 119454 Moscow



A. N. Khrustalev
MIREA – Russian Technological University
Russian Federation

78 Vernadsky Ave, 119454 Moscow



A. V. Losev
National Research Center “Kurchatov Institute” – VIAM
Russian Federation

17 Radio St, 105005 Moscow



N. A. Rashutin
MIREA – Russian Technological University
Russian Federation

78 Vernadsky Ave, 119454 Moscow



References

1. Kondrashov, S.V., Pykhtin, A.A., Larionov, S.A., Funktsionalnye materialy, poluchennye sposobom FDM-pechati [Functional materials obtained by FDM printing]: review, Trudy VIAM, 2021, No 3 (97), pp. 44–57. URL: http://www.viam-works.ru (reference date 30/01/2025). DOI: 10.18577/2307-6046-2021-0-3-44-57

2. Sokolova, L.V., Losev, A.V., Politova, E.D., Gibkost prokhodnykh tsepei i nanoorganizatsiya polimerov [Flexibility of flow chains and nanoorganization of polymers], Vysokomolekulyarnye soedineniya. Seriya A, 2020, V. 62, No 2, pp.1–14.

3. Kuzmicheva, G.M., Levko, A.A., Manomenova, V. L . , e t al., Growth, structural effects, and non-linear and spectroscopic properties of nanocomposites based on α-NiSO4·6H2O single crystals with TiO2 nanoparticles or sols, Journal of Alloys and Compounds, 2023, V. 965, p. 171369. DOI: 10.1016/j.jallcom.2023.171369

4. Yansen , H., Dudchig , S., Aneziris , K.G., MgO–C-beton s novymi svoistvami [MgO-C-concrete with new properties], Ogneupory i tekhnicheskaya keramika, 2009, No 1–2, pp. 47–50. EDN NBIGMJ.

5. Sokolova, L.V., Losev, A.V., Politova, E.D., Vliyanie dioksida titana na strukturu nanoorganizatsii dvoinykh sopolimerov [Effect of titanium dioxide on the nanoorganization structure of double copolymers], Trudy VIAM, 2024, No 4 (134), pp. 64–82. URL: http://www.viam-works.ru (reference date 30/01/2025). DOI: 10.18577/2307-6046-2024-0-4-64-82. EDN SQSPQW.

6. Sokolova, L . V. , Khrustalev, A.N., Volkov, V. V. , Pereverzeva, S.Yu., Nanoorganizatsiya polizoprenov i ikh deformiruemost [Nanoorganization of polyzoprenes and their deformability], Butle rovskie soobshcheniya, 2023, V. 73, No 1, pp. 50–61. DOI 10.37952/ROI-jbc-01/23-73-1-50. EDN YEYMUK.

7. Kablov, E.N., Kondrashov, S.V., Melnikov, A.A., et al., Issledovanie vliyaniya teplovogo rezhima FDM-pechati na strukturirovanie i koroblenie obraztsov polietilena [Investigation of the effect of the thermal regime of FDM printing on the structuring and warping of polyethylene samples], Trudy VIAM, 2021, No 7 (101), pp. 48–58. URL: http://www.viam-works.ru (reference date 30.01.2025). DOI: 10.18577/2307-6046-2021-0-7-48-58

8. Cuenca Pérez, D.E., Zumba Novay, E.G., Castillo Mazon, H.P., Quincuela Liamuca , J . P. , Elasticity and plasticity of PLA, PETG, ABS polymers for printing automotive parts, Espirales Revista Multidisciplinaria de investigación, 2024, V. 8, No 4, pp. 51–61.

9. Szykiedans K., Credo W., Osiński D. Selected mechanical properties of PETG 3-D prints, Procedia Engineering, 2017, V. 177, pp. 455–461.

10. Valvez, S., Silva, A.P., Reis P.N.B., Optimization of printing parameters to maximize the mechanical properties of 3D-printed PETG-based parts, Polymers, 2022, V. 14, No 13.

11. Kumar, M.A., Khan , M.S., Mishra, S.B., Effect of machine parameters on strength and hardness of FDM printed carbon fiber reinforced PETG thermoplastics, Materials Today: Proceedings, 2020, V. 27, pp. 975–983.

12. Shumeiko , I.A., Zaichenko , N.O., Analiz plastmass pri ikh vybore dlya 3D-pechati modeli vetroenergeticheskoi ustanovki [Analysis of plastics when choosing them for 3D-printing of a model of a wind power plant], Universum: tekhnicheskie nauki, 2021, No 3 (84), pp. 74–77.

13. Chen , T., Zhang , W., Zhang , J., Alkali resistance of poly (ethylene terephthalate) (PET) and poly (ethylene glycol-co-1, 4-cyclohexanedimethanol terephthalate) (PETG) copolyesters: The role of composition, Polymer Degradation and Stability, 2015, V. 120, pp. 232–243.

14. Camargo, J.R., Crapnell, R.D., Bernalte, E., et al., Conductive recycled PETG additive manufacturing filament for sterilisable electroanalytical healthcare sensors, Applied Materials Today, 2024, V. 39, p. 102285. DOI: 10.1016/j.apmt.2024.102285

15. Khrustalev, A.N., Smirnov, A . V. , Arbanas, L.A., e t al., Dielektricheskie svoistva polimernykh kompozitsionnykh materialov s keramicheskimi napolnitelyami dlya SVCh-priborov i oborudovaniya [Dielectric properties of polymer composite materials with ceramic fillers for microwave devices and equipment], Aviatsionnye materialy i tekhnologii, 2024, No 4 (77), pp. 95–116. DOI: 10.18577/2713-0193-2024-0-4-95-116

16. Primenenie PolyMax™ PETG ESD v proizvodstve gibkikh ploskikh kabelei [Application of PolyMax™ PETG ESD in the production of flexible flat cables]: elektronny resurs, 2024. URL: https://lider-3d.ru/blog/stati/primenenie-polymax-petg-esd-v-proizvodstve-gibkikh-ploskikh-kabeley/ (reference date: 31/07/2024)

17. Yan , C., Kleiner, C., Tabigue, A., et al., PETG: applications in modern medicine, Engineered Regeneration, 2023, V. 5 (1), pp. 45–55. DOI: 10.1016/j.engreg.2023.11.001

18. Batista, M., Lagomazzini, J.M., Ramirez-Peña, M., Vaz q uez -Ma rti nez, J.M., Mechanical and Tribological Performance o f Carbon Fiber-Reinforced PETG for FFF A pplications, Appl. Sci., 2023, V. 13, p. 12701. DOI: 10.3390/app132312701

19. Vijayasankar, K.N., Bonthu, D., Doddamani, M., Pati, F., Additive Manufacturing of Short Silk Fiber Reinforced PETG Composites, Materials Today Communications, 2022, V. 33, p. 104772. DOI: 10.1016/j.mtcomm.2022.104772

20. Rijckaert, S., Daelemans , L., Cardon , L., et al., Continuous Fiber-Reinforced Aramid/PETG 3D-Printed Composites with High Fiber Loading through Fused Filament Fabrication, Polymers, 2022, V. 14, No 2, p. 16. DOI: 10.3390/polym14020298, EDN YTDYCJ

21. Kumar, J . , Negi , S . , Mishra , V. , 3D printed PETG/cenosphere syntactic foam composites for lightweight structural applications, Materials Letters, 2024, V. 355, p. 135493. DOI: 10.1016/j.matlet.2023.135493

22. Silva, P.A.P., Oréfice, R.L., Da Silva, A.B., Santos , J.P.F., Self-healing polymer blend based on PETG and EMAA, Journal of Applied Polymer Science, 2021, V. 138, No 14, p. 50148. DOI: 10.1002/app.50148. EDN LZQWVB

23. Kholodkova, A.A., Kornyushin , M.V., Smirnov, A.V., et al., Kholodnoe spekanie α- i γ-modifikatsii oksogidroksida alyuminiya: nizkotemperaturny sposob polucheniya poristoi korundovoi keramiki [Cold sintering of α- and γ-modifications of aluminum oxohydroxide: a low-temperature method for producing porous corundum ceramics], Tonkie khimicheskie tekhnologii, 2024, No 19 (4), pp. 337–349. DOI: 10.32362/2410-6593-2024-19-4-337-349

24. Simonov-Emelyanov, I.D., Kharlamova, K.I., Teoreticheskie osnovy, modeli i raschety sostavov dispersno-napolnennykh polimerov s raznymi tipami struktur i svoistvami [Theoretical foundations, models and calculations of compositions of disperse-filled polymers with different types of structures and properties], Rossiisky khimichesky zhurnal, 2024, V. 68, No 1, pp. 58–68. DOI: 10.6060/rcj.2024681.11. EDN WATGYI

25. Zayakin, O . V. , Zhuchkov, V. I . , Akberdin, A.A., Fiziko-khimicheskie kharakteristiki oksidnykh rasplavov sistemy MgO-Al2O3-SiO2-SaO-Cr2O3-FeO [Physico-chemical characteristics of oxide melts of the MgO-Al2O3-SiO2-CaO-Cr2O3-FeO system], Butlerovskie soobshcheniya, 2016, V. 48, No 10, pp. 128–133, EDN XIQTZD

26. Kozlov, G.V., Dolbin , I.V., Perkolyatsionnye modeli dlya opisaniya stepeni usileniya modulya uprugosti vysokonapolnennykh nanokompozitov poliuretan/grafen [Percolation models for describing the degree of strengthening of the elastic modulus of highly filled polyurethane/graphene nanocomposites], Prikladnaya fizika, 2017, No 3, pp. 96–100, EDN YTYNYZ

27. Bobryshev, A.N., Zubarev, P.A., Kuvshinov, P.I., Lakhno , A.V., Analiz raspredeleniya napolnitelya v strukture kompozitov [Analysis of the filler distribution in the composite structure], Internet-vestnik VolgGASU, 2012, No 1 (20), p. 28, EDN PWPIIV

28. Vlasov, S.V., et al., Osnovy tekhnologii pererabotki plastmass [Fundamentals of plastic recycling technology]: study guide for universities, Moscow: Mir, 2006.

29. Rijckaert, S., Daelemans , L., Cardon , L., et al., Continuous Fiber-Reinforced Aramid/PETG 3D-Printed Composites with High Fiber Loading through Fused Filament Fabrication, Polymers, 2022, V. 14, No 2. DOI: 10.3390/polym14020298. EDN YTDYCJ


Review

For citations:


Sidorova S.A., Khrustalev A.N., Losev A.V., Rashutin N.A. Study of the physical and mechanical properties of aluminum oxide filament based on polyethylene terephthalate glycol for FDM-printing. Voprosy Materialovedeniya. 2025;(2(122)):99-109. (In Russ.) https://doi.org/10.22349/1994-6716-2025-122-2-99-109

Views: 5


ISSN 1994-6716 (Print)