Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Basic principles for structural integrity and lifetime assessment of BN-type fast reactors components with regard for material degradation

https://doi.org/10.22349/1994-6716-2018-96-4-191-214

Abstract

The present paper overviews the basic principles of Russian Standard elaborated by authors for justification of lifetime prolongation of BN-600 fast reactor (FR) and for justification of design lifetime of BN-800 and BN-1200 FR. These principles are based on the analysis of the main mechanisms of material embrittlement and damage under service and formulation of the limit conditions for different components of FR of BN type.

About the Authors

B. Z. Margolin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Dr Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



A. G. Gulenko
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



A. A. Buchatsky
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



A. A. Sorokin
NRC “Kurchatov Institute” – CRISM “Prometey”
Russian Federation

Cand Sc. (Eng)

49 Shpalernaya St, 191015 St Petersburg



O. Yu. Vilensky
JSC “Afrikantov OKBM”
Russian Federation
15 Burnakovsky proezd, 603074 Nizhny Novgorod


B. A. Vasilev
JSC “Afrikantov OKBM”
Russian Federation
15 Burnakovsky proezd, 603074 Nizhny Novgorod


References

1. Vasiliev, B.A., Vilensky, O.Yu., Kaidalov, V.B., Kamanin, Yu.L., Margolin, B.Z., Gulenko, A.G., Razrabotka metodologii i obosnovanie prodleniya sroka ekspluatatsii korpusa i nezamenyaemykh vnutrikorpusnykh elementov reaktora BN-600 do 45 let [Development of methodology and rationale of extension period of housing exploitation and irreplaceable intracorporeal elements of BN-600 reactor up to 45 years], Izvestiya vuzov: Yadernaya Energetika, 2011, No 1, pp. 32–43.

2. Margolin, B.Z., Shvetsova, V.A., Gulenko, A.G., Radiation embrittlement modelling in multiscale approach to brittle fracture of RPV steels, Int. J. Fract, 2013, No 179, pp. 87–108.

3. Kursevich, I.P., Margolin, B.Z., Prokoshev, O.Yu., Kokhonov, V.I., Mekhanicheskie svoistva austenitnykh stalei pri neitronnom obluchenii: vliyanie razlichnykh faktorov [Mechanical properties of austenite steels at neutron irradiation: effect of different factors], Voprosy Materialovedeniya, 2006, No 4 (48), pp. 55–68.

4. Sorokin, A.A., Margolin, B.Z., Kursevich, I.P., et al., Effect of neutron irradiation on tensile properties of materials for pressure vessel internals of WWER type reactors, Journal of Nuclear Materials, 2014, V. 444, pp. 373–384.

5. Margolin, B. Z., Sorokin, A.A., A physical-mechanical model of ductile fracture in irradiated austenitic steels, Strength of Materials, 2013, V. 45, Issue 2, pp. 125–143.

6. Margolin, B., Sorokin, A., Smirnov, V., Potapova, V., Physical and mechanical modelling of neutron irradiation effect on ductile fracture. Part 1. Prediction of fracture strain and fracture toughness of austenitic steels, Journal of Nuclear Materials, 2014, No 452, Issues 1–3, pp. 595–606.

7. Minkin, A.I., Margolin, B.Z., Smirnov, V.I., Sorokin, A.A., Improvement of a model to predict static fracture toughness of austenitic materials under neutron irradiation, Inorganic Materials: Applied Research, 2014, V. 5, Issue 6, pp. 617–625.

8. Margolin, B.Z., Sorokin, A.A., Shvetsova V.A., et al., The radiation swelling effect on fracture properties and fracture mechanisms of irradiated austenitic steels. Part I. Ductility and fracture toughness, Journal of Nuclear Materials, 2016, November, No 480, pp. 52–68.

9. Porter, D.L., Ferrite formation in neutron-irradiated type 304L stainless steel, Journal of Nuclear Materials, 1979, V. 79, No 2, pp. 406–411.

10. Margolin, B.Z., Sorokin, A.A., Kursevich, I.P., FCC-to-BCC phase transformation in austenitic steels for WWER internals with significant swelling, Proceedings of International Symposium Fontevraud 7, France, 26–30 September 2010, O12-A097-T02.

11. Margolin, B.Z., Kursevich, I.P., Sorokin, A.A., et al., Embrittlement and fracture toughness of highly irradiated austenitic steels for vesselinternals of WWER type reactors. Part 1. Relation between irradiation swelling and irradiation embrittlement. Experimental results, Strength of Materials, 2009, V. 41, Issue 6, pp. 593–602.

12. Margolin, B.Z., Kursevich, I.P., Sorokin, A.A., et al., Embrittlement and fracture toughness of highly irradiated austenitic steels for vesselinternals of WWER type reactors. Part 2. Relation between irradiation swelling and irradiation embrittlement. Physical and mechanical behavior, Strength of Materials, 2010, V. 42, Issue 2, pp. 144–153.

13. Fish, R. L., Hunter, C. W., Tensile Properties ofFast Reactor Irradiated Type 304 Stainless Steel, Irradiation Effects on the Microstructureand Properties of Metals, ASTM STP 611, American Society for Testing and Materials, 1976, pp. 119–138.

14. Fish, R.L., Straalsund, J.L., et al., Swelling and Tensile Property Evaluations of HighFluence EBR-II Thimbles, ASTM STP 529, 1973, pp. 149–164.

15. Claudson, T.T., Barker, R.W., The effects of fast flux irradiation on the mechanical properties and dimensional stability of stainless steel, Nuclear Application and Technology, 1970, No 9, pp. 10–23.

16. Kursevich, I.P., Margolin, B.Z., Prokoshev, O.Yu., et al., Effect of long-term operational aging on the mechanical properties and microstructure of austenitic 18Cr-9Ni steel and the weld metal, Inorganic Materials: Applied Research, 2013, V. 4, Issue 6, pp. 562–574.

17. Vasina, N.K., Margolin, B.Z., Gulenko, A.G., Kursevich, I.P., Radiatsionnoe raspukhanie austenitnykh stalei: vliyanie razlichnykh faktorov. Obraboka eksperimentalnykh dannykh i formulirovka opredelyayushchikh uravnenii [Radiation swelling of austenite steels: influence of various factors. Experimental data processing and wording of defining equations], Voprosy Materialovedeniya, 2006, No 4 (48), pp. 69–89.

18. Margolin, B.Z., Murashova, A.I., Neustroev, V.S., Analysis of the influence of type of stress state on radiation swelling and radiation creep of austenitic steels, Strength of Materials, 2012, V. 44, Issue 3, pp. 227–240.

19. Margolin, B.Z., Varovin, A.Ya., Minkin, A.I., et al., Determination of In-Service Change in the Geometry of WWER-1000 CoreBaffle: Calculations and Measurements, Proceedings of International Symposium Fontevraud 8, France, 15–18 September 2014, O-T02-143.

20. Margolin, B.Z., Gulenko, A.G., Buchatsky, A.A., Nesterova, E.V., Kashtan o v, A.D., Study of the effect of thermal aging on durability and plasticity of Kh18N9 steel, Inorganic Materials: Applied Research, 2011, V. 2, Issue 6, pp. 633–639.

21. RCC-MR: Design and construction rules for mechanical components of FBR Nuclear Islands, Appendix A16, Edition 2002, AFCEN, France (2002).

22. Margolin, B.Z., Gulenko, A.G., Kursevich, I.P., Buchatsky, A.A., Modeling for fracture in materials under long-term static creep loading and neutron irradiation. Part 1. A physico-mechanical model, Strength of materials, 2006, V. 38, Issue 3, pp. 221–233

23. Margolin, B.Z., Gulenko, A.G., Buchatsky, A.A., Prediction of Creep-Rupture Properties for Austenitic Steels Undergone Neutron Irradiation, Proceedings of ASME 2009 Pressure Vessels and Piping Division Conference, July 26–30 2009, Prague, PVP2009-77084.

24. Karzov, G.P., Margolin, B.Z., Shvetsova, V.A., Fiziko-mekhanicheskoe modelirovanie protsessov razrusheniya [Physical and mechanical modeling of destruction processes], St Petersburg: Politekhnika, 1993.

25. Gulenko, A.G., Margolin, B.Z., Buchatsky, A.A., Nuzhdov, A.A., Calculation of design curves of creep-rupture properties for Cr18Ni9 and Cr16Ni11Mo3 austenitic steels undergone neutron irradiation, Inorganic Materials: Applied Research, 2018, V. 9, Issue 6. In press.

26. Margolin, B.Z., Gulenko, A.G., Kursevich, I.P., Buchatsky, A.A., Modeling for fracture in materials under long-term static creep loading and neutron irradiation. Part 2. Prediction of creep rupture strength for austenitic materials, Strength of materials, 2006, V. 38, Issue 5, pp. 449–457.

27. Margolin, B.Z., Gulenko, A.G., Buchatsky, A.A., Balakin, S.M., Modeling for fracture in materials under long-term static creep loading and neutron irradiation. Part 3. Crack growth rate prediction for austenitic materials, Strength of materials, 2006, V. 38, Issue 6, pp. 565–574.

28. Normy rascheta na prochnost oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok PNAE G-7-002-86 [Rules and regulations in nuclear power engineering. Regulations for strength analysis in nuclear power plants equipment and piping PNAEG-7-002-86], Moscow: Energoatomizdat, 1989, p. 525.

29. Margolin, B.Z., Buchatsky, A.A., Gulenko, A.G., et al. A method for predicting fracture resistance of material in cyclic loading under viscoelastoplastic deformation and neutron irradiation conditions, Strength of materials, 2008, V. 40, Issue 6, pp. 601–614.

30. Filatov, V.M., Anikhimovsky, Yu.A., Solovev, D.V., Vasyutin, A.N., Ispytaniya na dlitelnuyu malotsiklovuyu ustalost pri neizometricheskom nagruzhenii [Long-term low-cycle fatigue test under nonisothermic loading], Zavodskaya Laboratoriya, 1975, V. 11, No 4, pp. 472–475.

31. Troshchenko, V.T., Deformirovanie i razrushenie metallov pri mnogotsiklovom nagruzhenii [Deformation and Fracture of Metals under High-Cycle Loading], Kiev: Naukova Dumka, 1987, p. 252.

32. Kogaev, V.P., Makhutov, N.A., Gusenkov, A.P., Raschety detalei mashin i konstruktsii na prochnost i dolgovechnost [Calculation of strength and lifetime ofcomponents of machinery and structural components], Moscow: Mashinostroenie, 1985, p. 224.

33. Vilensky, O.Yu., Krylov, A.N., Osipov, S.L., et al. Computational and experimental studies of the causes of crack network formation in the area of the heat exchanger tube sheet in the BN 600 reactor, Nuclear Energy and Technology, 2015, V. 1, Issue 2, pp. 83–87.


Review

For citations:


Margolin B.Z., Gulenko A.G., Buchatsky A.A., Sorokin A.A., Vilensky O.Yu., Vasilev B.A. Basic principles for structural integrity and lifetime assessment of BN-type fast reactors components with regard for material degradation. Voprosy Materialovedeniya. 2018;(4(96)):191-214. (In Russ.) https://doi.org/10.22349/1994-6716-2018-96-4-191-214

Views: 473


ISSN 1994-6716 (Print)