

Study of the influence of filler on the heating kinetics of cured polymer composite materials in a microwave electromagnetic field
https://doi.org/10.22349/1994-6716-2025-122-2-110-118
Abstract
Experimental studies of the heating process of cured carbon, glass and organoplastics and their components placed in an ultra-high-frequency (UHF) electromagnetic field have been performed. It has been shown that the main influence on the kinetics of the process is exerted by the thermal and electrophysical properties of the filler, as well as the absorbed radiation power. The effect of exposure time is less pronounced and is described quite accurately by power functions. For an epoxy binder, this dependence is close to linear. It has been established that the heating of carbon plastic in the first minute of microwave exposure exceeds this indicator for glass and organoplastic by 35–38%, despite an almost 4 times lower level of absorption of radiation power. The fact of more intense microwave heating of aramid fabric and organoplastic than fiberglass, which is manifested in an almost 2 times greater dependence of the heating temperature on the absorbed radiation power, requires additional study and justification.
Keywords
About the Authors
I. V. ZlobinaRussian Federation
Cand Sc. (Eng)
49 Shpalernaya St, 191015 St Petersburg
N. V. Bekrenev
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
D. V. Kondratov
Russian Federation
49 Shpalernaya St, 191015 St Petersburg
A. V. Anisimov
Russian Federation
Dr Sc. (Eng)
References
1. Doriomedov, M.S., Rossiisky i mirovoi rynok polimernykh kompozitov [Russian and global polymer composites market]: review, Trudy VIAM, 2020, No 6–7, pp. 29–37.
2. Mihailin, Yu.A., Konstruktsionnye polimernye kompozitsionnye materialy [Structural polymer composite materials], St Petersburg: Nauchnye osnovy i tekhnologii, 2010, 2nd ed.
3. Kablov, E.N., Materialy i khimicheskie tekhnologii dlya aviatsionnoi tekhniki [Materials and chemical technologies for aviation equipment], Vestnik Rossiiskoi Akademii nauk, 2012, V. 82, No 6, pp. 520–530.
4. Buendia, L., Torres , I., Ornelas , A., Castellanos , A., Influence of Thermal Gradients and Arctic Temperatures on the Mechanical Properties and Fracture Behavior of Woven Carbon and Woven Kevlar® Composites, ASME Open Journal of Engineering, 2024, V. 3. DOI: 10.1115/1.4065928
5. Vessey, A., Hodges , K.I., Shaffrey, L.C., Day, J.J., The composite development and structure of intense synoptic-scale Arctic cyclones, Weather and Climate Dynamics, 2022, No 3 (3), pp. 1097–1112. DOI: 10.5194/wcd-3-1097-2022
6. Dementiev, I.I., Ustinov, A.N., Metod snizheniya ostatochnykh napryazheniy v kompozitnykh elementakh konstruktsiy kosmicheskikh apparatov [A method for reducing residual stresses in composite elements of spacecraft structures], Almanakh sovremennoi nauki i obrazovaniya, 2017, No 6 (119), pp. 27–31.
7. Spiridonova, M.P., Puchkov, A.F., Novopoltseva, O.M., Khimicheskaya modifikatsiya polimernykh materialov [Chemical modification of polymer materials]: a textbook, VPI (filial) FGBOU VO VolgGTU, 2022, URL: http://lib.volpi.ru:57772/csp/lib/PDF/723226934.pdf (reference date 17/06/2025)
8. Rakhmankulov, A . A . , Issledovanie fiziko-mekhanicheskikh svoistv polimernykh kompozitov, poluchennykh na osnove binarnykh napolniteley [Investigation of the physico-mechanical properties of polymer composites based on binary fillers], Universum, 2023, No 11 (116). DOI: 10.32743/UniTech.2023.116.11.16238. URL: https://7universum.com/ru/tech/archive/item/16238 (reference date 17/06/2025)
9. Studentsov, V.N., Fizicheskaya modifikatsiya armirovannykh reaktoplastov [Physical modification of reinforced reactoplastics], Vestnik SGTU, 2011, No 4, Is. 3, pp. 209–217.
10. Zlobina, I.V., Bekrenev, N.V., Egorov, A.S., Kuznetsov, D.I., Vliyanie sverkhvysoko-chastotnogo elektromagnitnogo polya na mezhsloevuyu prochnost v otverzhdennykh polimernykh kompozitsionnykh materialakh [Effect of ultrahigh frequency electromagnetic field on interlayer strength in cured polymer composite materials], Zhurnal tekhnicheskoi fiziki, 2023, V. 93, Is. 2, pp. 237–340
11. Kwak, M ., Microwave Curing of Carbon-Epoxy Composites: Process Development and Material Evaluation: A thesis submitted to Imperial College London for the degree of Doctor of Philosophy. Imperial College London Department of Aeronautics, 2016. URL: https://core.ac.uk/download/pdf/77016173.pdf (reference date 17/06/2025)
12. Zlobina, I . V. , Bekrenev, N . V. , O mekhanizme povysheniya mekhanicheskikh kharakteristik otverzhdennykh polimernykh kompozitsionnykh materialov pod deistviem SVCh elektromagnitnogo polya [On the mechanism of increasing the mechanical characteristics of cured polymer composite materials under the action of a microwave electromagnetic field], Izv. Saratovskogo universteta. Ser.: Fizika, 2022, V. 22, No 2, pp.158–169.
13. Pyushner, G., Nagrev energiey sverkhvysokikh chastot [Ultrahigh frequency energy heating], Moscow: Energiya, 1968.
14. Microwave processing of materials, Washington: National Academy Press, 1994. URL: https://nap.nationalacademies.org/read/2266/chapter/1 (reference date 17/06/2025)
15. Arkhangelsky, Yu.S., Spravochnaya kniga po SVCh-elektrotermii [Reference book on microwave electrothermy], Saratov, 2011.
16. Zhou, J., et al., Effect of lay-up configuration on the microwave absorption properties of carbon fiber reinforced polymer composite materials, Materials Today Communications, 2021, V. 26, pp. 1–10.
17. Mikinka, E., Siwak, M., Recent advances in electromagnetic interference shielding properties of carbon-fibre-reinforced polymer composites. A topical review, J. Mater. Sci.: Mater. Electron., 2021, V. 32, pp. 24585–24643.
18. Chao H-W., Hsu H-C., Chen Y-R., Chang T-H. Characterizing the dielectric properties of carbon fiber at different processing stages, Sci. Rep., 2021, V. 11, Is. 1. DOI: 10.1038/s41598-021-96949-6
19. Putilina, P.M., Kutsevich , K.E., Isaev, A.Yu., Polimernye kompozitsionnye materialy na osnove uglerodnykh i steklyannykh volokon dlya izgotovleniya bespilotnykh letatelnykh apparatov i perspektivy ikh razvitiya [Polymer composite materials based on carbon and glass fibers for the manufacture of unmanned aerial vehicles and prospects for their development], Trudy VIAM, 2023, No 8 (126), pp. 85–99.
Review
For citations:
Zlobina I.V., Bekrenev N.V., Kondratov D.V., Anisimov A.V. Study of the influence of filler on the heating kinetics of cured polymer composite materials in a microwave electromagnetic field. Voprosy Materialovedeniya. 2025;(2(122)):110-118. (In Russ.) https://doi.org/10.22349/1994-6716-2025-122-2-110-118