Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Fiberglass reinforced plastics based on fillers recovered in pyridine under normal pressure

https://doi.org/10.22349/1994-6716-2025-122-2-119-129

Abstract

The article presents the results of a study on the recycling of polymer composite materials (PCMs) based on reactive matrices using solvolysis. Epoxy and epoxy vinyl ester resins were used as the matrix material, which were cured at room temperature. To optimize the selection of the solvolysis medium, the solubility parameter of the matrix component was calculated using the method of A. Askadsky. This method has been shown to be effective in selecting solvents for polymer matrices destruction. Based on experimental studies, pyridine was found to be the best solvent out of those considered. Its use reduced the time of the solvolysis process to 1 hour at boiling point (115°C). The resulting fibers had a residual content of 20% of the original polymer matrix. The strength of these recovered fibers was found to be up to 91% of their initial strength. However, composites made from these reconstituted fibers showed a 29.7% reduction in bending strength compared to the original compo sites. Despite this, the recovered fibers can be used to create non-essential, low-weight products. The study confirms the potential of using nitrogen-based solvents for recycling polymer composites.

About the Authors

A. E. Protsenko
Komsomolsk-na-Amure State University
Russian Federation

Cand Sc. (Eng)

27 Lenin St, 681013, Komsomolsk-on-Amur



I. A. Lyukho
Komsomolsk-na-Amure State University
Russian Federation

27 Lenin St, 681013, Komsomolsk-on-Amur



A. S. Kholodov
Komsomolsk-na-Amure State University
Russian Federation

27 Lenin St, 681013, Komsomolsk-on-Amur



V. V. Petrov
Komsomolsk-na-Amure State University
Russian Federation

Dr Sc. (Eng)

27 Lenin St, 681013, Komsomolsk-on-Amur



References

1. Kablov, E. N . , Strategicheskie napravleniya razvitiya materialov i tekhnologiy ikh pererabotki na period do 2030 goda [ Strategical areas of developing materials and their processing technologies for the period up to 2030], Aviatsionnye materialy i tekhnologii, 2012, No S, pp. 7–17.

2. Doriomedov, M . S . , Rossiiskiy i mirovoy rynok polimernykh kompozitov [Russian and world market of polymer composites]: review, Trudy VIAM, 2020, V. 89, No 6–7, pp. 29–37. DOI: 10.18577/2307-6046-2020-0-67-29-37

3. Doriomedov, M.S., Daskovskiy, M.I., Skripachev, S.Yu., Shein, E.A., Polimernye kompozitsionnye materialy v zheleznodorozhnom transporte Rossii [Polymer composite materials in the Russian railways]: review, Trudy VIAM, 2016, V. 7, No 43, p. 12. DOI: 10.18577/2307-6046-2016-0-7-12-12

4. Balıkoğlu, F., Demircioğlu, T.K., Yıldız, M., Arslan, N., Ataş, A., Mechanical performance of marine sandwich composites subjected to flatwise compression and flexural loading: Effect of resin pins, Journal of Sandwich Structures and Materials, 2018, V. 22, No 6, pp. 2030–2048. DOI: 10.1177/1099636218792671

5. Majewski, P., Florin, N., Jit, J., Stewart, R.A., End-of-life policy considerations for wind turbine blades, Renewable and Sustainable Energy Reviews, 2022, V. 164, p. 112538. DOI: 10.1016/j.rser.2022.112538

6. Chatziparaskeva, G., Papamichael, I., Voukkali , I., Loizia, P., Sourkouni, G., Argirusis , C . , Zorpas , A . A . , End-of-Life of Composite Materials in the Framework of the Circular Economy, Microplastics, 2022, V. 1, No 3, pp. 377–392. DOI: 10.3390/ microplastics1030028

7. Pietroluongo, M., Padovano, E., Frache, A., Badini, C., Mechanical recycling of an end-of-life automotive composite component, Sustainable Materials and Technologies, 2020, V. 23, p. e00143. DOI: 10.1016/j.susmat.2019.e00143

8. Abdallah, R., Juaidi, A., Savaş, M., Çamur, H., Albatayneh, A.M., Abdala, S., Manzan o -A g u glia r o, F.A., Critical Review on Recycling Composite Waste Using Pyrolysis for Sustainable Development, Energies, 2021, V. 14, No 18, p. 5748. DOI: 10.3390/en14185748

9. Khrulkov, A . V. , Gusev, Yu.A., Mishkin, S.I., Doriomedov, M.S., Effektivnost utilizatsii kompozitsionnykh materialov [Efficiency of utilization of composite materials], Novosti materialovede niya. Nauka i tekhnika, 2016, V. 6, No 24, p. 9

10. Kooduvalli, K., Unser, J., Ozcan, S., Vaidya, U., Embodied Energy in Pyrolysis and Solvolysis Approaches to Recycling for Carbon Fiber-Epoxy Reinforced Composite Waste Streams, Recycling, 2022, V. 7, No 1, p. 6. DOI: 10.3390/recycling7010006

11. Jiang, T.W., Reddy, K.S.K., Chen, Y.C . , Wang, M.W., Chang, H.C., AbuOmar, M .M . , Lin , C . H . , Recycling Waste Polycarbonate to Bisphenol A-Based Oligoesters as Epoxy-Curing Agents, and Degrading Epoxy Thermosets and Carbon Fiber Composites into Useful Chemicals, ACS Sustainable Chemistry & Engineering, 2022, V. 10, No 7, pp. 2429–2440. DOI: 10.1021/acssuschemeng.1c07247

12. Protsenko , A . E . , Petrov, V. V. , Uprochnenie steklyannykh volokon, poluchennykh pri retsiklinge polimernogo kompozitsionnogo materiala [Strengthening of glass fibers obtained by recycling of polymer composite material], Uprochnyayushchie tekhnologii i pokrytiya, 2022, V. 18, pp. 347–351. DOI: 10.36652/1813-1336-2022-18-8-347-351

13. Protsenko, A.E., Protsenko, A.N., Shakirova, O.G., Petrov, V. V. , Recycling of Epoxy/Fiberglass Composite Using Supercritical Ethanol with (2,3,5-Triphenyltetrazolium)2[CuCl4] Complex, Polymers, 2023, V. 15, No 6, p. 1559. DOI: 10.3390/polym15061559

14. Askadsky, A.A., Matveev, Yu. I., Khimicheskoe stroenie i fizicheskie svoistva polimerov [Chemical structure and physical properties of polymers], Moscow: Khimiya, 1983.

15. Protsenko , A . E. , Petrov, V. V. , Recycling of Fiberglass Fillers Obtained from Polymer Composites Based on an Epoxy Vinyl Ester Binder, Mechanics of Composite Materials, 2022, No 58 (9), pp. 1–8. DOI: 10.1007/s11029-022-10048-9

16. Beygisangchin, M., Abdul Rashid, S., Shafie, S., Sadrolhosseini, A.R., Lim, H . , Preparations, Properties, and Applications of Polyaniline and Polyaniline Thin Films – A Review, Polymers, 2021, No 13 (12), p. 2003. DOI: 10.3390/polym13122003

17. Xu, S., Dong, X., Zhao, Y. , Han, J., Ji, Y. , Kuang, R., Zhang, S., Ma, S., Preparation of Environmentally Friendly Anticorrosive Coatings with Aniline Trimer-Modified Waterborne Polyurethane, Coatings, 2024, No 14 (11), p. 1380. DOI: 10.3390/coatings14111380

18. Deev, I.S., Dobryanskaya, O.A., Kurshev, E.V., Vliyanie morskoi vody na mikrostrukturu i mekhanicheskie svoistva ugleplastika v napryazhennom sostoyanii, Materialovedenie, 2012, No 11, pp. 37–41.

19. Zhu, P., Yang, Y. Z . , Chen, Y. , Quian, G.R., Liu, Q., Influence factors of determining optimal organic solvents for swelling cured brominated epoxy resins to delaminate waste printed circuit boards, Journal of Material Cycles and Waste Management, 2018, No 20 (1–3), pp. 245–253. DOI: 10.1007/s10163-016-0574-0


Review

For citations:


Protsenko A.E., Lyukho I.A., Kholodov A.S., Petrov V.V. Fiberglass reinforced plastics based on fillers recovered in pyridine under normal pressure. Voprosy Materialovedeniya. 2025;(2(122)):119-129. (In Russ.) https://doi.org/10.22349/1994-6716-2025-122-2-119-129

Views: 5


ISSN 1994-6716 (Print)