Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Effects of neutron irradiation on aggregate- and dispersion-hardened structure of ZTA composite ceramics

https://doi.org/10.22349/1994-6716-2025-122-2-130-152

Abstract

The work investigated the effect of neutron irradiation on the aggregate- and dispersion-hardened structure of composite ceramics of the composition α-Al2O3 + n% YSZ (ZrO2 + 3 mol.% Y2O3) (n = 0; 1; 5; 10 and 15 wt.%) obtained as a result of processing compacts with high hydrostatic pressure (HHP) – 300 and 700 MPa. X-ray structural analysis showed that neutron irradiation of two-phase ceramics did not cause phase changes in the ceramic composite. In the course of the work it was established that the effect of grain fragmentation in the material is observed only in relation to YSZ particles and is not observed in relation to α-Al2O3 grains, which may be associated with the structural features of the crystal lattices of α-Al2O3 and t-ZrO2. The results of the research allow us to talk about the prospects for using the studied ceramics under conditions of radiation exposure.

About the Authors

A. V. Maletsky
Donetsk Institute for Physics and Engineering named after A.A. Galkin; Joint Institute for Nuclear Research
Russian Federation

72 St R. Luxemburg, 283114 Donetsk;

6 Joliot Curie St, 141980 Moscow Region, Dubna



R. Sh. Isaev
Donetsk Institute for Physics and Engineering named after A.A. Galkin; Joint Institute for Nuclear Research
Russian Federation

72 St R. Luxemburg, 283114 Donetsk;

6 Joliot Curie St, 141980 Moscow Region, Dubna



D. R. Belichko
Donetsk Institute for Physics and Engineering named after A.A. Galkin
Russian Federation

Dr Sc. (Phys-Math )

72 St R. Luxemburg, 283114 Donetsk



G. K. Volkova
Donetsk Institute for Physics and Engineering named after A.A. Galkin
Russian Federation

72 St R. Luxemburg, 283114 Donetsk



References

1. Korenkov, V.V., Stolyarov, R.A., Vasyukov, V.M., Shuklinov, A.V., Khodan, A.N., Fiziko-mekhanicheskie svoistva keramicheskogo kompozita NOA/MUNT [Physico-mechanical properties of ceramic composite NOA/MUNT], Vestnik rossiyskikh universitetov: Matematika, 2011, No 3.

2. Skripnyak, E.G., Skripnyak, V. A . , Kulkov, S.S., Korobenkov, M . V. , Skripnyak , V. V. , Modelirovanie mekhanicheskogo povedeniya keramicheskikh kompozitov s transformatsionno-uprochnennoi matritsei pri dinamicheskikh vozdeistviyakh [Modeling of the mechanical behavior of ceramic composites with a transformation-hardened matrix under dynamic influences], Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mekhanika, 2010, No 2.

3. Abyzov, A.M., Issledovaniya v oblasti sozdaniya vysokokachestvennoi alyumooksidnoi keramiki. Ch. 1. Spekanie s dobavkami, reaktsionnoe spekanie, poluchenie armirovannykh kompozitov [Research in the field of creating high-quality aluminum oxide ceramics. Part 1:. Sintering with additives, reaction sintering, production of reinforced composites], Steklo i keramika, 2018, No 8, pp. 8–19.

4. Zholudev, D.S., Keramicheskie materialy v ortopedicheskoi stomatologii. Keramika na osnove oksida alyuminiya [Ceramic materials in orthopedic dentistry. Ceramics based on aluminum oxide], Problemy stomatologii, 2012, No 5.

5. Zholudev, S.E., Ivlev, Yu.N., Klinicheskiy primer ispolzovaniya gibridnykh materialov v praktike ortopedicheskoi stomatologii [A clinical example of the use of hybrid materials in the practice of orthopedic dentistry], Problemy stomatologii, 2018, No 1.

6. Mikhailov, M.M., Yuryev, S.A., Lapin, A.N., Goronchko, V.A., Mikhailova, O.A., Optical properties of aluminum oxide powder modified by nanoparticles and prospects for its use in solar power and space industry, Acta Astronautica, 2023, V. 212, pp. 483–491. URL: https://doi.org/10.1016/j.actaastro.2023.08.030

7. Tamilarasi, T., Pratheep, V. G . , Rajasekar, R., Ravichandran, K., Shanmugam, A . , Sriraam , H . , Jagan , N . , Study and performance analysis of graphite and aluminium oxide coating on heat spreader application, Materials Today: Proceedings, 2022, V. 66, P. 3, pp. 1066–1073. URL: https://doi.org/10.1016/j.matpr.2022.04.842

8. Maletsky, A . V. , Belichko, D.R., Konstantinova, T.E., Volkova , G.K., Doroshkevich , A . S . , Lyubchyk , A . I . , et al . , Structure formation and properties of corundum ceramics based on metastable aluminum oxide doped with stabilized zirconium dioxide, Ceramics International, 2021, V. 47, No 14, pp. 19489–19495. URL: https://doi.org/10.1016/j.ceramint.2021.03.286

9. Maletsky, A.V., Konstantinova, T.E., Volkova , G.K., Belichko D. R., Doroshkevich A. S., Popov E., et al. High hydrostatic pressure influence on the properties and tendency to agglomeration of ZrO2 grains of the Al2O3 – YSZ composite ceramics system, Ceramics International, 2023, V. 49, No 10, pp. 16044–16052. URL: https://doi.org/10.1016/j.ceramint.2023.01.202

10. Dmitriev, K.I., Bobkova, T.V., Sorokina, T.P., Koveza, V.A., Yu rtae va, A.S., Doronin, V.P., Potapenko , O.V., Adjustment of textural and acidic properties of aluminum oxide by modifying the product of thermo-chemical activation of gibbsite with acids in hydrothermal conditions // Microporous and Mesoporous Materials, 2024, V. 369, p. 113025. URL: https://doi.org/10.1016/j.micromeso.2024.113025

11. Danilenko, I., Lakusta, M., Loladze, L., Volkova , G., Popov, I., Glazunova, V., Konstantinova, T., Effect of alumina added by mechanical mixing and co-doping on the densification mechanisms of zirconia nanoparticles at the initial stage of sintering, Results in Physics, 2020, V. 19, p. 103495. URL: https://doi.org/10.1016/j.rinp.2020.103495

12. Ahkozov, L., Lakusta, M., Danilenko, I., Volkova, G., Konstantinova, T., Influence of cold isostatic pressure on formation of secondary nanoscale zirconia inclusions in alumina grains in ceramic composites 3Y-TZP with small amount of Al2O3, 2018 IEEE 8th International Conference Nanomaterials: Application & Properties (NAP), 2018, pp. 1–5. URL: https://doi.org/10.1109/NAP.2018.8915299

13. Chai, J., Zhu , Y., Niu , L., Shen , T., Cui, M., Wang , Z., Fabrication and characterization of SiC–ZTA ceramic composites by hot pressing, Ceramics International, 2023, V. 49, No 20, pp. 32799–32807. URL: https://doi.org/10.1016/j.ceramint.2023.07.249

14. Safonova, M.N., Fedotov, A.A., Razrabotka instrumentalnogo materiala na osnove metalliches koi matritsy, uprochnennoi poroshkami prirodnogo almaza [Development of a tool material based on a metal matrix reinforced with natural diamond powders], Evraziisky Soyuz Uchenykh, 2015, No 6–3 (15). URL: https://cyberleninka.ru/article/n/razrabotka-instrumentalnogo-materiala-na-osnove-metallicheskoy-matritsy-uprochnennoy-poroshkami-prirodnogo-almaza

15. García Ferré, F., Mairov, A., Ceseracciu , L., et al., Radiation endurance in Al2O3, Scientific Reports, 2016, V. 6, p. 33478. URL: https://doi.org/10.1038/srep33478

16. Lawrence, F., Mallika, C., Mudali, U.K., Natarajan, R., Ponraju, D., Seshadri, S.K., Kumar, T.S.S., Radiation degradation in the mechanical properties of polyetheretherketone–alumina compo sites, Journal of Nuclear Materials, 2012, V. 420, No 1–3, pp. 338–341. URL: https://doi.org/10.1016/j.jnucmat.2011.10.024

17. Abyshev, B., Kozlovskiy, A.L., Zhumadilov, K.S., Trukhanov, A.V., Study of radiation embitterment and degradation processes of Li2ZrO3 ceramic under irradiation with swift heavy ions, Ceramics, 2022, V. 5, No 1, pp. 13–23. URL: https://doi.org/10.3390/ceramics5010002

18. AbdEl-Hameed , A.M., Radiation effects on composite materials used in space systems: a review, NRIAG Journal of Astronomy and Geophysics, 2022, V. 11, No 1, pp. 313–324. URL: https://doi.org/10.1080/20909977.2022.2079902

19. Giniyatova, S.G., Kozlovskiy, A.L., Rspayev, R.M., Borgekov, D.B., Zdorovets , M . V. , Study of the kinetics of radiation damage in CeO2 ceramics upon irradiation with heavy ions, Materials, 2023, V. 16, No 13, p. 4653. URL: https://doi.org/10.3390/ma16134653

20. Danilenko, I., Prokhorenko, S., Konstantinova, T., Ahkozov, L., Burkhovetski, V., Glazunova, V. Effect of small amount of alumina on structure, wear and mechanical properties of 3Y-TZP ceramics, World Journal of Engineering, 2014. V. 11, No 1, pp. 9–16.

21. Strekalovsky, V.N., Polezhaev, Yu.M., Palguev, S.F., Oksidy s primesnym besporyadkom: sostav, struktura, fazovye prevrashcheniya [Oxides with impurity disorder: composition, structure, phase transformations], Moscow: Nauka, 1987.

22. Konstantinova, T.E., Danilenko, I.A., Tokiy, V.V., Glazunova, V.A., Poluchenie nanoporoshka tsirkoniya: ot innovatsii k innovatsii [Production of zirconium nanopowder: from innovation to innovation], Nauka i innovatsii, 2005, V. 1, No 3, pp. 76–87.

23. Ledo Pereda, L.M., Semenov, V.N., Rikhvitsky, V. S., et al., Ion beam scanning system for EG-5 accelerator, Physics of Particles and Nuclei Letters, 2024, V. 21, pp. 938–945. URL: https://doi.org/10.1134/S1547477124701061

24. Belichko , D.R., Volkova, G.K., Maletsky, A.V., Isaev, R.Sh., Vliyanie protonnogo oblucheniya na strukturu i svoistva kompozitnoi keramiki sostava YSZ–SiO2–Al2O3 [Effect of proton irradiation on the structure and properties of composite ceramics of the composition YSZ–SiO2–Al2O3], Voprosy materialovede niya, 2024, No 3 (119), pp. 46–56. URL: https://doi.org/10.22349/1994-6716-2024-119-3-46-56

25. Anderson, Dzh., Struktura metallicheskikh katalizatorov [Structure of metal catalysts], Moscow: Mir, 1973.

26. Guinier, A., X-Ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies, Courier Corporation, 1994.

27. Maletsky, A.V., Volkova , G.K., Belichko, D.R., Glazunova, V.A., Doroshkevich, A.S., Tatarinova, A.A., et al., Influence of stabilized zirconium dioxide and high hydrostatic pressure on the kinetics of sintering nanopowders of metastable aluminum oxide, Ceramics International, 2024. URL: https://doi.org/10.1016/j.ceramint.2024.09.002

28. Lakusta, M., Danilenko, I., Volkova , G., Loladze, L., Golovan, G., Brukhanova, I., et al., Effect of mechanical activation on sintering behaviour of tetragonal zirconia nanopowders, Ceramics International, 2020, V. 46, No 9, pp. 13953–13960. URL: https://doi.org/10.1016/j.ceramint.2020.02.193

29. Bron, V.A., O rekristallizatsii korunda [About recrystallization of corundum], Doklady Akademii nauk SSSR, 1951, V. 80, No 4, pp. 661–664.

30. Shaposhnikov, A . V. , Gritsenko, D . V. , Petrenko, I.P., Pchelyakov, O.P., Gritsenko , V. A . , Atomnaya i elektronnaya struktura ZrO2 [Atomic and electronic structure of ZrO2], Zhurnal eksperimentalnoi i teoreticheskoi fiziki, 2006, V. 129, No 5, pp. 914–925.

31. Uglov, V.V., Radiatsionnye protsessy i yavleniya v tverdykh telakh [Radiation processes and phenomena in solids], Minsk: Vysheishaya shkola, 2016.

32. Fizicheskoe materialovedenie. T. 5: Materialy s zadannymi svoistvami [Physical materials science. V. 5: Materials with specified properties], Kalin B.A. (Ed.), Moscow: NIYaU MIFI, 2012.

33. Bokshtein, B.S., Diffuziya v metallakh [Diffusion in metals], Moscow: Metallurgiya, 1978.

34. Lakusta, M., Danilenko, I., Konstantinova, T., Volkova , G., Influence of obtaining conditions on kinetics of the initial sintering stage of zirconia nanopowders, Nanoscale Research Letters, 2016, V. 11, No 1. URL: https://doi.org/10.1186/s11671-016-1452-3


Review

For citations:


Maletsky A.V., Isaev R.Sh., Belichko D.R., Volkova G.K. Effects of neutron irradiation on aggregate- and dispersion-hardened structure of ZTA composite ceramics. Voprosy Materialovedeniya. 2025;(2(122)):130-152. (In Russ.) https://doi.org/10.22349/1994-6716-2025-122-2-130-152

Views: 3


ISSN 1994-6716 (Print)