Preview

Voprosy Materialovedeniya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

High-temperature hydrogen corrosion of steel: a review

https://doi.org/10.22349/1994-6716-2025-122-2-180-200

Abstract

The paper offers an analytical review of theoretical and applied research devoted to high-temperature hydrogen attack on steel. Advanced diagnostic techniques of hydrogen attack are examined, the fundamen tal domestic and foreign developments are reviewed. The article is focused on the most promising recent studies of HTHA damage for purposes of estimating fitness-for-service of metal equipment exposed to hydrogen at elevated temperatures and risk/failure assessment.

About the Authors

A. N. Dobrotvorskaya
JSC NPO Lenkor
Russian Federation

Cand Sc. (Phys-Math)

31A Bely Kuna St, 192236 St Petersburg



M. A. Dobrotvorsky
JSC NPO Lenkor
Russian Federation

Cand Sc. (Phys-Math)

31A Bely Kuna St, 192236 St Petersburg



D. A. Zaitsev
JSC NPO Lenkor
Russian Federation

31A Bely Kuna St, 192236 St Petersburg



References

1. Neftepererabatyvayushchaya i neftekhimicheskaya promyshlennost [Oil refining and petrochemical industry], Korroziya i zashchita khimicheskoi apparatury, Sukhotin A.M., Shreider A.V., Archakov Yu.I. (Eds.), Leningrad: Khimiya, 1974, V. 9.

2. Archakov, Yu.I., Vodorodnaya korroziya stali [Hydrogen corrosion of steel], Moscow: Metallurgiya, 1985.

3. Fletcher, E.E., Elsea, A.R., The effects of high-pressure, high-temperature hydrogen on steel, Defense Metals Information Center, Battelle Memorial Institute, 1964, V. 202. URL: https://babel.hathitrust.org/cgi/pt?id=mdp.39015095155274&seq=13

4. Nugent, M., Silfies, T., Dobis, J., Armitt, T., A review of high-temperature hydrogen attack (HTHA) modeling, prediction, and non-intrusive inspection in refinery applications, Corrosion, 2017, pp. 11–13. URL: https://doi.org/10.5006/C2017-08924

5. Poorhaydari, K., A Comprehensive Examination of High-Temperature Hydrogen Attack: A Review of over a Century of Investigations, Journal of Materials Engineering and Performance, 2021, V. 30, pp. 7875–7908.

6. API RP 571: Damage Mechanisms Affecting Fixed Equipment in the Refining Industry, Creep and Stress Rupture, American Petroleum Institute, 2020, 3rd ed.

7. Xu, X., Niu, J., Li, Ch., Huang, H., Yin, Ch., Comparative Study on Hydrogen Embrittlement Susceptibility in Heat-Affected Zone of TP321 Stainless Steel, Materials Science Forum, Trans Tech Publications, 2020, V. 993, pp. 568–574. URL: https://doi.org/10.4028/www.scientific.net/MSF.993.568

8. Li, X., Chen, H., Yao, Z., Li, J., Ke, W., Hydrogen Attack on Austenitic Steel 304 under High Temperature and High Pressure, Acta Metall. Sinica Ser. B, 1993, V. 6, Is. 11, pp. 374–378.

9. API RP 941: Steels for Hydrogen Service at Elevated Temperatures and Pressures in Petroleum Refineries and Petrochemical Plants, 8th ed., Washington: American Petroleum Institute, 2016.

10. Elli ot, P., Materials performance in high-temperature environments – making the choice, NACE Corrosion Proceedings, 2000, pp. 1–22.

11. Tekhnicheskie ukazaniya – reglament po ekspluatatsii i obsledovaniyu oborudovaniya ustanovok kataliticheskogo riforminga i gidroochistki, rabotayushchikh v vodorodsoderzhashchikh sredakh pri povyshennykh temperature i davlenii [Technical instructions-regulations on exploitation and inspection of catalytic reforming and hydrocleaning equipment operating in water-holding systems at elevated temperatures and pressures], St Petersburg, 1998.

12. API RP 579-1/ASME FFS-1: Fitness-For-Service, Washington: American Petroleum Institute and American Society of Mechanical Engineers, 2021, 4th ed.

13. Prueter, P.E., Leveraging fitness-for-service and inspection techniques to manage the risks associated with high-temperature hydrogen attack, E²G industry insight, 2019, V. 7, p. 14. URL: https://e2g.com/library-item/leveraging-fitness-for-service-and-inspection-techniques-to-manage-the-risks-associated-withhigh-temperature-hydrogen-attack/ (reference date 3/06/2025)

14. Martin, M.L., Dadfarnia, M., Orwig, S., Moore, D., Sofronis, P., A microstructurebased mechanism of cracking in high temperature hydrogen attack, Acta Materialia, 2017, V. 140, pp. 300–304. URL: https://doi.org/10.1016/j.actamat.2017.08.051(reference date 3/06/2025)

15. Tang, S., Guo, T.F., Cheng, L., Modeling hydrogen attack effect on creep fracture toughness, Int. J. Solids Struct., 2011, V. 48, Is. 20, pp. 2909–2919. URL: https://doi.org/10.1016/j.ijsolstr.2011.06.007

16. Krynicki, J., Bagnoli, K., McLaughlin, J.E., Probabilistic Risk Based Approach for Performing an Onstream High Temperature Hydrogen Attack Inspection, 61st Annual Conference & Exposition, 2006.

17. Chevreux, N., Flament, C., Gillia, O., David, T., Goti, R., Le Nevé, C., Andrieu , E . , Understanding the Phenomenon of High Temperature Hydrogen Attack (HTHA) Responsible for Ferrito-Pearlitic Steels Damage, High Temperature Corrosion of mater., 2024, V. 101, pp. 1225–1236. URL: https://doi.org/10.1007/s11085-024-10281-8

18. Benzerga, A.A., Leblond, J.B., Ductile fracture by void growth to coalescence, Advances in applied mechanics, 2010, V. 44, pp. 169–305. URL: https://doi.org/10.1016/S0065-2156(10)44003-X

19. Eliezer, D . , High-temperature hydrogen attack of carbon steel, J. Mater. Sci., 1981, V. 16, pp. 2962–2966. URL: https://doi.org/10.1007/BF00540300

20. Pillot, S., Corre, S., Coudreuse, L., Chauvy, C., To us saint, P., Development and production of creep and hydrogen resistant grade 91 (9 Cr1 Mov) heavy plates for new generating high efficiency refining reactors, NACE Proceedings, 2013, V. 91, pp. 1–15.

21. Schlögl, S.M., Svoboda, J., Van der Giessen, E., Evolution of the methane pressure in a standard 2.25 Cr–1Mo steel during hydrogen attack, Acta Mater., 2001, V. 49, No 12, pp. 2227–2238. URL: https://doi.org/10.1016/S1359-6454(01)00132-X

22. Van Der Burg, M.W.D., Van Der Giessen, E., A Continuum damage relation for hydrogen attack cavitation, Acta Mater., 1997, V. 45, pp. 3047–3057. URL: https://doi.org/10.1016/S1359-6454(96)00382-5

23. Sundararajan, G., Shewmon, P.G., The kinetics of hydrogen attack of steels, Metall Trans A, 1981, V. 12, pp. 1761–1775. URL: https://doi.org/10.1007/BF02643758

24. Shewmon, P.G., Synergism between creep ductility and grain boundary bubbles, Acta Metal., 1987, V. 35, pp. 1317–1324. URL: https://doi.org/10.1016/0001-6160(87)90013-7

25. Dadfarnia, M., Martin, M.L., Moore, D.E., Orwig, S.E., Sofronis, P., A model for high temperature hydrogen attack in carbon steels under constrained void growth, Int. J. Fract., 2019, V. 219, pp. 1–17. URL: https://doi.org/10.1007/s10704-019-00376-8

26. Pillot , S . , Coudreuse , L . , Hydrogen-induced disbonding and embrittlement of steels used in petrochemical refining, Gaseous hydrogen embrittlement of materials in energy technologies, 2012, pp. 51–93. URL: https://doi.org/10.1533/9780857093899.1.51

27. Ovchinnikov, I . I . , Ovchinnikov, I . G . , Vliyanie vodorodosoderzhashchei sredy privysokikh temperaturakh i davleniyakh na povedenie metallov i konstruktsiy iz nikh [Influence of a hydrogencontaining medium at high temperatures and pressures on the behavior of metals and structures made of them], Naukovedenie, 2012, No 4 (13). URL: https://naukovedenie.ru/PDF/60tvn412.pdf (reference date 2/06/2025).

28. Alekseev, V.I., Yusupov, V.S., Lazarenko, G.Yu., Mekhanizm vliyaniya molibdena i medi na antikorrozionnye svoistva stali [The mechanism of influence of molybdenum and copper on the anticorrosive properties of steel], Perspektivnye materialy, 2009, V. 6, pp. 21–29.

29. Shewmon, P.G., Hydrogen Attack of Carbon Steel, Metallurgical transactions A, V. 7A, 1976, pp. 279–286. URL: https://doi.org/10.1007/BF02644468

30. Alekseev, V. I . , Bogolyubsky, S.D., Ushakov, I.S., Termodinamicheskaya otsenka sklonnosti khromistykh stalei k vodorodnoi korrozii pri povyshennykh temperaturakh i davleniyakh vodoroda [Thermodynamic assessment of the susceptibility of chromium steels to hydrogen corrosion at elevated temperatures and hydrogen pressures], Zhurnal fiz. khimii, 1971, V. 45, No 8.

31. Schlögl S. M., Giessen E. van der., Micromechanics of High Temperature Hydrogen Attack, Proceedings of the European Conference on Computational Mechanics, solids, structures, and coupled problems in engineering, August 31 – September 3, 1999, pp. 1–11.

32. Bodden Connor, M.T., Barrett, C.D., Introduction of Molecular Dynamics for HTHA and a Review Article of HTHA, J Fail. Anal. and Preven., 2022, V. 22, pp. 1326–1345. URL: https://doi.org/10.1007/s11668-022-01419-4

33. Skrypnyk, L.D., Analytic evaluation of hydrogen-assisted void growth at high temperatures, Mater. Sci., 1997, V. 33, No 4, pp. 478–490. URL: https://doi.org/10.1007/BF02537545

34. Parthasarathy, T.A., Lopez, H.F., Shewmon, P.G., Hydrogen Attack kinetics of 2.25 Cr-1 Mo steel weld metals, Metall. Trans. A, 1985, V. 16A, pp. 1143–1144. URL: https://doi.org/10.1007/BF02811683

35. Archakov, Yu. I., Grebeshkova, I.D., Neftekhimicheskaya promyshlennost [Petrochemical industry], Korroziya i zashchita khimicheskoi apparatury, Leningrad: Khimiya, 1974, V. 9, P. 2, pp. 335–364.

36. Pavlov, S.B., Malikov, V.A., Vliyanie vodoroda na stal 09G2S pri povyshennykh temperaturakh i davleniyakh [The effect of hydrogen on steel 09G2C at elevated temperatures and pressures], Mezhdunarodny nauchno-issledovatelsky zhurnal, 2014, V. 10, pp. 38–39.

37. Shih , H .M . , Johnson , H . H . , Inclusions, grain boundaries and hydrogen attack, Scripta Metallurgica, 1977, V. 11, pp. 151–154. DOI: 10.1016/0036-9748(77)90296-4

38. Mostert, R.J., Mukarati, T.W., Pretorius, C.C.E., Mathoho, V.M., A constitutive equation for the kinetics of high temperature hydrogen attack, Procedia Structural Integrity, 2022, V. 37, pp. 763–770. URL: https://doi.org/10.1016/j.prostr.2022.02.007

39. Looney, L., Hurst, R.C., Taylor, D., The effect of high pressure hydrogen on the creep fracture of notched ferritic-steel components, Journal of Materials Processing Technology, 1998, V. 77, pp. 25–31. URL: https://doi.org/10.1016/S0924-0136(97)00384-1

40. Alshahrani, M.A.M., Ooi, S.W., Colliander, M.H., El-Fallan, G.M.A.M., Bhadeshia , H . K . D . H . , High-temperature hydrogen attack on 2.25 cr-1mo steel: the roles of residual carbon, initial microstructure and carbide stability, Metallurgical and Materials Transactions A, 2022, V. 53, No 12, pp. 4221–4232. URL: https://doi.org/10.1007/s11661-022-06809-9

41. Archakov, Yu . I . , Fenomenologicheskaya teoriya legirovaniya vodorodoustoichivykh stalei, Voprosy atomnoi nauki i tekhniki, 2008, No 2, pp. 31–36.

42. ASM Handbook Committee. V. 1: Properties and Selection: Irons, Steels, and High-Performance Alloys – ASM International, 1990. URL: https://doi.org/10.31399/asm.hb.v01.9781627081610

43. Shimomu ra, J-I., Tani, H., Kooriyama, T., Sato, Sh., Ueda, S., High Strength 2-1/4 and 3% Cr-1% Mo Steels with Excellent Hydrogen Attack Resistance, Kawasaki steel technical report, 1989, No 20, pp. 78–87.

44. Archakov, Yu.I., Vodorodoustojchivost’ stali [Hydrogen resistance of steel], Moscow: Metallurgiya, 1978.

45. Alekseev, V. I . , Bogolyubsky, S.D., Ushakov, I.S., Shvartsman, L.A., Termodinamicheskaya otsenka sklonnosti khromistykh staley k vodorodnoy korrozii pri povyshennykh temperaturakh i davleniyakh vodoroda [Thermodynamic assessment of the propensity of chromium steels to hydrogen corrosion at elevated temperatures and hydrogen pressures], Zhurnal fiz. khimii, 1971, V. 45, pp. 2053–2055.

46. Utevsky, L.M., Otpusknaya khrupkost stali [Tempering brittleness of steel], Moscow: Metallurgizdat, 1961.

47. Chao, B.L., Odette, G.R., Lucas, G.E., Kinetics and mechanisms of hydrogen attack in 2.25Cr1Mo steel, Santa Barbara (USA): Oak Ridge National Lab, 1988.

48. Schlogl, S.M., Van Der Giessen, E., Van Leeuwen, Y. , On methane generation and decarburization in low-alloy Cr-Mo steels during hydrogen attack, Metal. Mater. Trans. A, 2000,V. 31, No 1, pp. 125–137. URL: https://doi.org/10.1007/s11661-000-0059-5

49. Chan, S.L. I., Hydrogen trapping ability of steel with different microstructure, Journal of the Chinese Institute of Engineers, 1999, V. 22, Is. 1, pp. 43–53. URL: https://doi.org/10.1080/02533839.1999.9670440

50. Yamani, A., A cost effective development of an ultrasonic A-scans database for high-temperature hydrogen attack, NDT&E International, 2008, V. 41, pp. 163–168. URL: https://doi.org/10.1016/j.ndteint.2007.10.007

51. Allevato, C., Utilizing acoustic emission testing to detect high-temperature hydrogen attack (HTHA) in Cr-Mo reformer reactors and piping during thermal gradients, Procedia Engineering, 2011, V. 10, pp. 3552–3560. URL: https://doi.org/10.1016/j.proeng.2011.04.585

52. Hlongwa , N . , Mabuwa , S . , Msomi , V. , The development of techniques to detect high temperature hydrogen attack – A mini review, Materials Today: Proceedings, 2021, V. 45, pp. 5415–5418. URL: https://doi.org/10.1016/j.matpr.2021.02.112

53. Li, X., D o n g, C., Li, M., C hen, H., Effect of hydrogen attack on acoustic emission behavior of low carbon steel, International Journal of Minerals, Metallurgy and Materials, 2002, V. 9, No 2, pp. 130–134.

54. Panza rella, C., C och ran, J., The E2G Model of High Temperature Hydrogen Attacs and the New Prager Curves, WRC Bulleten Current Concepts for Life Assessment of Pressure Vessels and Piping, 2016, V. 568, pp. 135–169.

55. Nugent, M., Silfies, T., Kowalski, P., Sutton, N., Recent applications of evaluations of equipment in HTHA service, NACE Proceedings, 2018.

56. Le Nevé, C., Loyan, S., Le Jeune, L., Mahaut, S., Demonte, S., Chauveau, D., Te s si e r, M., et al., High temperature hydrogen attack: New NDE advanced capabilities – development and feedback, Pressure Vessels and Piping Conference. American Society of Mechanical Engineers, 2019, Paper No PVP2019-94001, V007T07A011, p. 11. URL: https://doi.org/10.1115/PVP2019-94001

57. Dobrotvorsky, A.M., Kopyltsov, A.V., Dobrotvorsky, M.A., Novye fiziko-khimicheskie metody vyyavleniya prichin otkazov tekhnologicheskogo oborudovaniya neftepererabatyvayushchikh predpriyatiy [New physico-chemical methods for identifying the causes of failures of technological equipment of oil refineries], Khimicheskaya tekhnika, 2017, V. 1, p 30

58. Asviyan, M.B., Vliyanie masshtabnogo faktora na dlitelnuyu prochnost trub pri vysokom vnutrennem davlenii vodoroda [The effect of the scale factor on the long-term strength of pipes at high internal pressure of hydrogen], Zavodskaya laboratoriya, 1963, V. 3, pp. 352–356.

59. Asviyan , M .B . , Osnovnye faktory, vliyayushchie na dlitelnuyu prochnost stali pri vysokikh davleniyakh vodoroda [The main factors affecting the long-term strength of steel at high hydrogen pressures], Fiziko-khimicheskaya mekhanika materialov, 1977, V. 6, pp. 3–6.

60. Chernykh , N . P. , Vliyanie vodoroda na dlitelnuyu prochnost nekotorykh stalei [The effect of hydrogen on the long-term strength of some steels], Vliyanie vodoroda na sluzhebnye svoistva stali, Irkutsk: Irkutskoe kn. izd-vo, 1963.

61. Kartashov, A.M., Vliyanie vodorodnogo vozdeistviya pri vysokoi temperature i davlenii na uprugie svoistva uglerodistoi stali [The effect of hydrogen exposure at high temperature and pressure on the elastic properties of carbon steel], Sbornik nauchnykh trudov aspirantov, Leningrad: LITMO, 1974, pp. 142–145.

62. Mironov, V. I., Emelyanov, I.G., Vichuzhanin, D.I., Zamaraev, L.M., Ogorelkov, D.A., Yakovlev, V.V., Vliyanie temperatury navodorozhivaniya i rastyagivayushchego napryazheniya na parametry polnoi diagrammy deformirovaniya stali 09G2S [Effect of hydrogenation temperature and tensile stress on the parameters of the complete deformation diagram for steel 09G2S], Diagnostics, Resource and Mechanics of Materials and Structures, 2020, No 1, pp. 24–33.

63. Archakov, Yu. I., Teslya, B.M., Issledovanie vliyaniya vodoroda na rabotosposobnost oborudovaniya i truboprovodov pri dlitelnykh srokah ekspluatatsii [Investigation of the effect of hydrogen on the operability of equipment and pipelines during long-term operation], Protsessy neftepererabotki i neftekhimii. Sbornik nauchnykh trudov k 75-letiyu VNIINEFTEKHIMa, St Petersburg, 2005.

64. Nelson, G., Hydrogenation Plant Steels, Proceedings API, 1949, V. 29M, pp. 163–174.

65. API Publication 940: Steel Deterioration in Hydrogen: A Report on Corrosion Research, Washington: American Petroleum Institute, 1967.

66. API Publication 945: A Study of the Effects of High-temperature, High-pressure Hydrogen on Lowalloy Steels, Washington: American Petroleum Institute, 1975.

67. Cantwell, J., High-Temperature Hydrogen Attack, Mater.Perform., 1994, V. 33 (7), pp. 58–61.

68. Staats, J., Buchheim, G., A new practical method for prioritizing equipment in HTHA service for inspection and replacement and the challenges in obtaining process conditions to be used in the HTHA assessment, NACE Corrosion Proceedings, 2016, p. 7233.

69. Sutton, N.G., Time Dependent Nelson Curve Update, World Fertilizer, 2024, July/August.

70. Osage, D., e t al., E2G Technical Report 94: E2G HTHA JIP FFS. Rules for API 579-1/ASME FFS-1, Part 15, Version 7, The Equity Engineering Group, 2017.

71. Pretorius, C.C.E., Mostert, R.J., Mukarati, T.W., Mathoho V.M. Microstructural influences on the damage evolution and kinetics of high temperature hydrogen attack in a C-0.5 Mo welded joint, SuidAfrikaanse Tydskrif vir Natuurwetenskap en Tegnologie, 2021, V. 40, No 1, pp. 212–223. URL: https://hdl.handle.net/10520/ejc-aknat_v40_n1_a55

72. Panzarella, C.H., Osage, D.A., Spring, D.W., Gassama, E., Cochran, J., The α–Ω HTHA Model and the Time-Dependent Prager Curves, WRC Bulletin 585, The Welding Research Council – New York, 2021.


Review

For citations:


Dobrotvorskaya A.N., Dobrotvorsky M.A., Zaitsev D.A. High-temperature hydrogen corrosion of steel: a review. Voprosy Materialovedeniya. 2025;(2(122)):180-200. (In Russ.) https://doi.org/10.22349/1994-6716-2025-122-2-180-200

Views: 3


ISSN 1994-6716 (Print)