Effect of hydroexstrusion on the structure and mechanical properties of copper M0b, pre-treated by equal-channel angular pressing
https://doi.org/10.22349/1994-6716-2025-123-3-31-37
Abstract
The patterns of the formation of submicrocrystalline structure of the grain type and copper properties under conditions of intensive plastic deformation and subsequent processing of hydroextrusion with varying degrees of deformation have been studied. It was established that with an increase in the degree of single-stage hydroextrusion to ε = 1.2, the strength level of copper M0b does not increase compared to its strength after equal-channel angular pressing. This indicates the beginning of the return processes and dynamic recrystallization of the material, which is confirmed by structural studies using electron microscopy and radiographic analysis.
About the Authors
L. F. SennikovaRussian Federation
Cand Sc. (Eng)
72 R. Luxemburg St, 283114 Donetsk, DPR
A. N. Gangalo
Russian Federation
Cand Sc. (Eng)
72 R. Luxemburg St, 283114 Donetsk, DPR
V. M. Tkachenko
Russian Federation
Cand Sc. (Eng)
72 R. Luxemburg St, 283114 Donetsk, DPR
G. K. Volkova
Russian Federation
72 R. Luxemburg St, 283114 Donetsk, DPR
V. A. Glazunova
Russian Federation
72 R. Luxemburg St, 283114 Donetsk, DPR
E. Kh. Klimova
Russian Federation
72 R. Luxemburg St, 283114 Donetsk, DPR
References
1. Volokitina, I.E., Volokitin, A.V., Evolyutsiya mikrostruktury i mekhanicheskikh svoistv medi v protsesse pressovanie – volochenie [Evolution of the microstructure and mechanical properties of copper during the pressing-drawing process], Fizika metallov i metallovedenie, 2018, No 119 (9), pp. 971–976.
2. Lezhnev, S.N., Volokitina, I.E., Panin, E.A., Volokitin, A.V., Evolyutsiya mikro-struktury i mekhanicheskikh svoistv medi pri realizatsii sovmeshchennogo protsessa prokatka – RKU-pressovanie [Evolution of the microstructure and mechanical properties of copper during the combined rolling-ECA-pressing process], Fizika metallov i metallovedenie, 2020, No 121 (7), pp. 757–762.
3. Ivanov, A.M., Kombinirovanie metodov deformatsionnoi obrabotki materialov [Combining methods of deformation processing of materials], Vestnik Bryanskogo gosudarstvennogo tekhnicheskogo universiteta, 2019, V. 10, No 83.
4. Ivanov, A.M., Uprochnenie nizkolegirovannoi stali kombinirovaniem ekstruzii vintovogo i ravnokanalnogo pressovaniy [Hardening of low-alloy steel by combining screw extrusion and equal-channel pressing], Vestnik mashinostroeniya, 2017, No 2.
5. Nugmanov, D.P., Sitdikov, O.Sh., Markushev, M.V., Povedenie vtorykh faz v magnievom splave MA14 pri vsestoronnei izotermicheskoi kovke i posleduyushchei izotermicheskoi prokatke [Behavior of second phases in magnesium alloy MA14 during comprehensive isothermal forging and subsequent isothermal rolling], Materials Letters, 2017, V. 7, No 2, pp. 198–202.
6. Sennikova, L.F., Gangalo, A.N., Volkova, G.K., Klimova, E.H., Zakonomernosti formirovaniya mikrostruktury i mekhanicheskikh svoistv medi M1 v usloviyakh kombinirovannoi plasticheskoi deformatsii [Patterns of microstructure formation and mechanical properties of M1 copper under conditions of combined plastic deformation], Voprosy materialovedeniya, 2023, No 4 (116), pp. 50–56.
7. Valiev, R.Z., Zhilyaev, A.P., Lengdon, T.G., Obiemnye nanostrukturnye materialy: fundamentalnye osnovy primeneniya [Bulk Nanostructured Materials: Fundamental Principles of Application], St Petersburg: Eko-Vektor, 2017.
8. Rusakov, A.A., Rentgenografiya metallov [Radiography of metals], Moscow: Atomizdat, 1977.
9. Utyashev, F.Z., Raab, G.I., Valitov, V.A., Deformatsionnoe nanostrukturirovanie metallov i splavov [Deformational Nanostructuring of Metals and Alloys], St Petersburg: Naukoemkie tekhnologii, 2020.
10. Trefilov, V.I., Deformatsionnoe uprochnenie i razrushenie polikristallicheskikh metallov [Deformational hardening and fracture of polycrystalline metals], Kiev: Naukova dumka, 1989.
11. Rogachev, S.O., Zemlyakova, N.V., Osobennosti rekristallizatsii medi v protsesse intensivnoi plasticheskoi deformatsii pri komnatnoi temperature [Features of copper recrystallization during intensive plastic deformation at room temperature], Vestnik nauchno-tekhnicheskogo razvitiya, 2024, No 173.
12. Gorelik, S.S., Rekristallizatsiya metallov i splavov [Recrystallization of metals and alloys], Moscow: MISiS, 2005. 13. Polukhin, P.I., Gorelik, S.S., Vorontsov, V.K., Fizicheskie osnovy plasticheskoi deformatsii [Physical foundations of plastic deformation], Moscow: Metallurgiya, 1982.
13. Umansky, Ya.S., Skakov, Yu.A., Ivanov, A.N., Rastorguev, L.N., Kristallografiya, Rentgenografiya i elektronnaya mikroskopiya [Crystallography, X-ray diffraction, and electron microscopy], Moscow: Metallurgiya, 1982.
Review
For citations:
Sennikova L.F., Gangalo A.N., Tkachenko V.M., Volkova G.K., Glazunova V.A., Klimova E.Kh. Effect of hydroexstrusion on the structure and mechanical properties of copper M0b, pre-treated by equal-channel angular pressing. Voprosy Materialovedeniya. 2025;(3(123)):31-37. (In Russ.) https://doi.org/10.22349/1994-6716-2025-123-3-31-37






















