Development and research of photopolymer ceramic pastes for stereolithographic additive manufacturing
https://doi.org/10.22349/1994-6716-2025-123-3-58-68
Abstract
The paper studies properties of a suspension with aluminum oxide powders in a photopolymer composition developed for laser stereolithography. It is shown that the modified photopolymer IPLIT4 is the optimal choice in the manufacture of suspensions for the additive manufacturing of ceramic parts by stereolithography. Pastes with a ceramic filler content of 72% by weight were obtained. The possibilities of terahertz diagnostics of polymer ceramic and ceramic materials at different stages of the production process are demonstrated.
Keywords
About the Authors
A. A. AngelutsRussian Federation
1 Leninskie Gory, 119234 Moscow
M. A. Markov
Russian Federation
1 Akademika Kurchatova Sq, 123182
M. M. Novikov
Russian Federation
1 Akademika Kurchatova Sq, 123182
A. P. Shkurinov
Russian Federation
1 Akademika Kurchatova Sq, 123182
1 Leninskie Gory, 119234 Moscow
S. A. Cherebylo
Russian Federation
1 Akademika Kurchatova Sq, 123182
References
1. Zakeri, S., Vippola, M., Levänen, E., A comprehensive review of the photopolymerization of ceramic resins used in stereolithography, Additive Manufacturing, 2020, V. 35, p. 101177. URL: https://doi.org/10.1016/j.addma.2020.101177
2. Patent RU 2685211: Zhidkaya fotopolimerizuyushchayasya kompozitsiya dlya lazernoi stereolitografii [Liquid photopolymerizable composition for laser stereolithography], Gurevich, Ya.M., Markov, M.A., Nikitin, A.N., et al., Publ. 16.04.2019.
3. . Khoder, V. B. , Kordikova, E. I. , Dyakova , G. N. , Napolnennye fotopolimernye kompozitsii dlya 3D-pechati metodom stereolitografii [Filled photopolymer compositions for 3D printing using stereolithography]: review, Trudy BGTU: Ser. 2: Khimicheskie tekhnologii, biotekhnologii, geoekologiya, 2022, No 1 (253), pp. 27–32.
4. Bove, A., Calignano. F., Galati, M., Iuliano, L., Photopolymerization of Ceramic Resins by Stereolithography Process: A Review, Appl. Sci., 2022, No 12 (7), p. 3591. URL: https://doi.org/10.3390/appl2073591
5. Liu, G., Yan, C., Zhang, K., Jin, H., He, R., Effect of Solid Loading on the Property of Al2O3 Ceramics in Stereolithographic Additive Manufacturing, Journal of Inorganic Materials, 2022, V. 37, No 3, pp. 353–360. DOI: 10.15541/jim20210636
6. Azarmi, F., Sevostianov, I., Evolution of thermo-mechanical properties in the process of alumina manufacturing using laser stereolithography technique, International Journal of Engineering Science, 2019, V. 144, p. 103125. URL: https://doi.org/10.1016/j.ijengsci.2019.103125
7. Lakhdar, Y. , Tuck , C. , Binner, J. , Terry, A . , Goodridge , R . , Additive manufacturing of advanced ceramic materials, Progress in Materials Science, 2021, V. 116, p. 100736. URL: https://doi.org/10.1016/j.pmatsci.2020.100736
8. De Camargo, I.L., et al., A review on the rheological behavior and formulations of ceramic suspensions for vat photopolymerization, Ceram. Int., 2021, V. 47 (80), pp. 11906–11921. URL: https://doi.org/10.1016/j.ceramint.2021.01.031
9. Ermakova, L.V., et al. Vliyanie akrilatnogo monomera na kharakteristiki fotopolimerizuemyi suspenzij dlya polucheniya keramiki iz stabilizirovannogo ZrO2 [Description of acrylate monomer based on the characteristics of photopolymerization of a suspension for the production of stabilized ZrO2 ceramics], Steklo i keramika, 2022, No 10, pp. 3–10.
10. Sokolov, Р.S., et al., Rheological properties of zirconium oxide suspensions in acrylate monomers for use in 3D printing, Glass Ceram., 2018, V. 75, pp. 55–59. URL: https://doi.org/10.1007/sl0717-018- 0028-3
11. Schmidleithner, C., Kalaskar, D., 3D-printing. Ch. 1: Stereolithography, Cvetković D. (Ed.), London: IntechOpen, 2018. DOI: 10.5772/intechopen.78147
12. Kamaev, S.V., Markov, M.A., Nikitin, A.N., Novikov, M.M., Lazernaya stereolitografiya: sostoyanie i perspektivy [Laser Stereolithography: Status and Prospects], Additivnye tekhnologii, 2018, No 4, pp. 44–48.
13. Halloran, J.W., Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization, Annual Review of Materials Research., 2016, V. 46, pp. 19–40. URL: https://doi.org/10.1146/annurev-matsci-070115-031841
14. Schwentenwein М., et al., Lithography-based ceramic manufacturing: a novel technique for additive manufacturing of high-performance ceramics, Advances in Science and Technology, 2014, V. 88, pp. 60–64.
Review
For citations:
Angeluts A.A., Markov M.A., Novikov M.M., Shkurinov A.P., Cherebylo S.A. Development and research of photopolymer ceramic pastes for stereolithographic additive manufacturing. Voprosy Materialovedeniya. 2025;(3(123)):58-68. (In Russ.) https://doi.org/10.22349/1994-6716-2025-123-3-58-68






















